期刊文献+
共找到264篇文章
< 1 2 14 >
每页显示 20 50 100
Word sense disambiguation using semantic relatedness measurement 被引量:7
1
作者 YANG Che-Yu 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第10期1609-1625,共17页
All human languages have words that can mean different things in different contexts, such words with multiple meanings are potentially “ambiguous”. The process of “deciding which of several meanings of a term is in... All human languages have words that can mean different things in different contexts, such words with multiple meanings are potentially “ambiguous”. The process of “deciding which of several meanings of a term is intended in a given context” is known as “word sense disambiguation (WSD)”. This paper presents a method of WSD that assigns a target word the sense that is most related to the senses of its neighbor words. We explore the use of measures of relatedness between word senses based on a novel hybrid approach. First, we investigate how to “literally” and “regularly” express a “concept”. We apply set algebra to WordNet’s synsets cooperating with WordNet’s word ontology. In this way we establish regular rules for constructing various representations (lexical notations) of a concept using Boolean operators and word forms in various synset(s) defined in WordNet. Then we establish a formal mechanism for quantifying and estimating the semantic relatedness between concepts—we facilitate “concept distribution statistics” to determine the degree of semantic relatedness between two lexically expressed con- cepts. The experimental results showed good performance on Semcor, a subset of Brown corpus. We observe that measures of semantic relatedness are useful sources of information for WSD. 展开更多
关键词 word sense disambiguation (WSD) Semantic relatedness wordNET Natural language processing
下载PDF
Graph-Based Chinese Word Sense Disambiguation with Multi-Knowledge Integration 被引量:1
2
作者 Wenpeng Lu Fanqing Meng +4 位作者 Shoujin Wang Guoqiang Zhang Xu Zhang Antai Ouyang Xiaodong Zhang 《Computers, Materials & Continua》 SCIE EI 2019年第7期197-212,共16页
Word sense disambiguation(WSD)is a fundamental but significant task in natural language processing,which directly affects the performance of upper applications.However,WSD is very challenging due to the problem of kno... Word sense disambiguation(WSD)is a fundamental but significant task in natural language processing,which directly affects the performance of upper applications.However,WSD is very challenging due to the problem of knowledge bottleneck,i.e.,it is hard to acquire abundant disambiguation knowledge,especially in Chinese.To solve this problem,this paper proposes a graph-based Chinese WSD method with multi-knowledge integration.Particularly,a graph model combining various Chinese and English knowledge resources by word sense mapping is designed.Firstly,the content words in a Chinese ambiguous sentence are extracted and mapped to English words with BabelNet.Then,English word similarity is computed based on English word embeddings and knowledge base.Chinese word similarity is evaluated with Chinese word embedding and HowNet,respectively.The weights of the three kinds of word similarity are optimized with simulated annealing algorithm so as to obtain their overall similarities,which are utilized to construct a disambiguation graph.The graph scoring algorithm evaluates the importance of each word sense node and judge the right senses of the ambiguous words.Extensive experimental results on SemEval dataset show that our proposed WSD method significantly outperforms the baselines. 展开更多
关键词 word sense disambiguation graph model multi-knowledge integration word similarity
下载PDF
WORD SENSE DISAMBIGUATION BASED ON IMPROVED BAYESIAN CLASSIFIERS 被引量:1
3
作者 Liu Ting Lu Zhimao Li Sheng 《Journal of Electronics(China)》 2006年第3期394-398,共5页
Word Sense Disambiguation (WSD) is to decide the sense of an ambiguous word on particular context. Most of current studies on WSD only use several ambiguous words as test samples, thus leads to some limitation in prac... Word Sense Disambiguation (WSD) is to decide the sense of an ambiguous word on particular context. Most of current studies on WSD only use several ambiguous words as test samples, thus leads to some limitation in practical application. In this paper, we perform WSD study based on large scale real-world corpus using two unsupervised learning algorithms based on ±n-improved Bayesian model and Dependency Grammar (DG)-improved Bayesian model. ±n-improved classifiers reduce the window size of context of ambiguous words with close-distance feature extraction method, and decrease the jamming of useless features, thus obviously improve the accuracy, reaching 83.18% (in open test). DG-improved classifier can more effectively conquer the noise effect existing in Naive-Bayesian classifier. Experimental results show that this approach does better on Chinese WSD, and the open test achieved an accuracy of 86.27%. 展开更多
关键词 word Sense disambiguation (WSD) Natural Language Processing (NLP) Unsupervised learning algorithm Dependency Grammar (DG) Bayesian classifier
下载PDF
Word sense disambiguation based on rough set
4
作者 陈清才 王晓龙 +2 位作者 赵健 陈滨 王长风 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2002年第2期201-204,共4页
A sense feature system (SFS) is first automatically constructed from the text corpora to structurize the textural information. WSD rules are then extracted from SFS according to their certainty factors and are applied... A sense feature system (SFS) is first automatically constructed from the text corpora to structurize the textural information. WSD rules are then extracted from SFS according to their certainty factors and are applied to disambiguate the senses of polysemous words. The entropy of a deterministic rough prediction is used to measure the decision quality of a rule set. Finally, the back off rule smoothing method is further designed to improve the performance of a WSD model. In the experiments, a mean rate of correction achieved during experiments for WSD in the case of rule smoothing is 0.92. 展开更多
关键词 word SENSE disambiguation ROUGH SET SENSE FEATURE system
下载PDF
Word Sense Disambiguation in Information Retrieval
5
作者 Francis de la C. Fernández REYES Exiquio C. Pérez LEYVA Rogelio Lau FERNáNDEZ 《Intelligent Information Management》 2009年第2期122-127,共6页
The natural language processing has a set of phases that evolves from lexical text analysis to the pragmatic one in which the author’s intentions are shown. The ambiguity problem appears in all of these tasks. Previo... The natural language processing has a set of phases that evolves from lexical text analysis to the pragmatic one in which the author’s intentions are shown. The ambiguity problem appears in all of these tasks. Previous works tries to do word sense disambiguation, the process of assign a sense to a word inside a specific context, creating algorithms under a supervised or unsupervised approach, which means that those algorithms use or not an external lexical resource. This paper presents an approximated approach that combines not supervised algorithms by the use of a classifiers set, the result will be a learning algorithm based on unsupervised methods for word sense disambiguation process. It begins with an introduction to word sense disambiguation concepts and then analyzes some unsupervised algorithms in order to extract the best of them, and combines them under a supervised approach making use of some classifiers. 展开更多
关键词 disambiguation ALGORITHMS NATURAL LANGUAGE processing word SENSE disambiguation
下载PDF
Chinese word sense disambiguation based on neural networks
6
作者 刘挺 卢志茂 +1 位作者 郎君 李生 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第4期408-414,共7页
The input of a network is the key problem for Chinese word sense disambiguation utilizing the neural network. This paper presents an input model of the neural network that calculates the mutual information between con... The input of a network is the key problem for Chinese word sense disambiguation utilizing the neural network. This paper presents an input model of the neural network that calculates the mutual information between contextual words and the ambiguous word by using statistical methodology and taking the contextual words of a certain number beside the ambiguous word according to (-M,+N).The experiment adopts triple-layer BP Neural Network model and proves how the size of a training set and the value of Mand Naffect the performance of the Neural Network Model. The experimental objects are six pseudowords owning three word-senses constructed according to certain principles. The tested accuracy of our approach on a closed-corpus reaches 90.31%, and 89.62% on an open-corpus. The experiment proves that the Neural Network Model has a good performance on Word Sense Disambiguation. 展开更多
关键词 word sense disambiguation artificial neural network mutual information pseudowords
下载PDF
Word Sense Disambiguation Model with a Cache-Like Memory Module
7
作者 LIN Qian LIU Xin +4 位作者 XIN Chunlei ZHANG Haiying ZENG Hualin ZHANG Tonghui SU Jinsong 《Journal of Donghua University(English Edition)》 CAS 2021年第4期333-340,共8页
Word sense disambiguation(WSD),identifying the specific sense of the target word given its context,is a fundamental task in natural language processing.Recently,researchers have shown promising results using long shor... Word sense disambiguation(WSD),identifying the specific sense of the target word given its context,is a fundamental task in natural language processing.Recently,researchers have shown promising results using long short term memory(LSTM),which is able to better capture sequential and syntactic features of text.However,this method neglects the dependencies among instances,such as their context semantic similarities.To solve this problem,we proposed a novel WSD model by introducing a cache-like memory module to capture the semantic dependencies among instances for WSD.Extensive evaluations on standard datasets demonstrate the superiority of the proposed model over various baselines. 展开更多
关键词 word sense disambiguation(WSD) memory module semantic dependencies
下载PDF
Improving the Collocation Extraction Method Using an Untagged Corpus for Persian Word Sense Disambiguation
8
作者 Noushin Riahi Fatemeh Sedghi 《Journal of Computer and Communications》 2016年第4期109-124,共16页
Word sense disambiguation is used in many natural language processing fields. One of the ways of disambiguation is the use of decision list algorithm which is a supervised method. Supervised methods are considered as ... Word sense disambiguation is used in many natural language processing fields. One of the ways of disambiguation is the use of decision list algorithm which is a supervised method. Supervised methods are considered as the most accurate machine learning algorithms but they are strongly influenced by knowledge acquisition bottleneck which means that their efficiency depends on the size of the tagged training set, in which their preparation is difficult, time-consuming and costly. The proposed method in this article improves the efficiency of this algorithm where there is a small tagged training set. This method uses a statistical method for collocation extraction from a big untagged corpus. Thus, the more important collocations which are the features used for creation of learning hypotheses will be identified. Weighting the features improves the efficiency and accuracy of a decision list algorithm which has been trained with a small training corpus. 展开更多
关键词 Collocation Extraction word Sense disambiguation Untagged Corpus Decision List
下载PDF
Word Sense Disambiguation Based Sentiment Classification Using Linear Kernel Learning Scheme
9
作者 P.Ramya B.Karthik 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2379-2391,共13页
Word Sense Disambiguation has been a trending topic of research in Natural Language Processing and Machine Learning.Mining core features and performing the text classification still exist as a challenging task.Here the... Word Sense Disambiguation has been a trending topic of research in Natural Language Processing and Machine Learning.Mining core features and performing the text classification still exist as a challenging task.Here the features of the context such as neighboring words like adjective provide the evidence for classification using machine learning approach.This paper presented the text document classification that has wide applications in information retrieval,which uses movie review datasets.Here the document indexing based on controlled vocabulary,adjective,word sense disambiguation,generating hierarchical cate-gorization of web pages,spam detection,topic labeling,web search,document summarization,etc.Here the kernel support vector machine learning algorithm helps to classify the text and feature extract is performed by cuckoo search opti-mization.Positive review and negative review of movie dataset is presented to get the better classification accuracy.Experimental results focused with context mining,feature analysis and classification.By comparing with the previous work,proposed work designed to achieve the efficient results.Overall design is per-formed with MATLAB 2020a tool. 展开更多
关键词 Text classification word sense disambiguation kernel support vector machine learning algorithm cuckoo search optimization feature extraction
下载PDF
基于WordNet的无导词义消歧方法 被引量:6
10
作者 王瑞琴 孔繁胜 潘俊 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第4期732-737,共6页
有导词义消歧机器学习方法由于需要大量人力进行词义标注,难以适用于大规模词义消歧任务.提出一种避免人工词义标注的无导消歧方法.该方法综合利用WordNet知识库中的多种知识源(包括:词义定义描述、使用实例、结构化语义关系、领域属性... 有导词义消歧机器学习方法由于需要大量人力进行词义标注,难以适用于大规模词义消歧任务.提出一种避免人工词义标注的无导消歧方法.该方法综合利用WordNet知识库中的多种知识源(包括:词义定义描述、使用实例、结构化语义关系、领域属性等)描述歧义词的词义信息,生成词义的"代表词汇集"和"领域代表词汇集",结合词汇的词频分布信息和所处的上下文环境进行词义判定.利用通用测试集Senseval-3对6个典型的无导词义消歧方法进行开放实验,该方法取得平均正确率为49.93%的消歧结果. 展开更多
关键词 词义消歧 wordNet知识库 结构化语义关系
下载PDF
基于WordNet词义消歧的系统融合 被引量:12
11
作者 刘宇鹏 李生 赵铁军 《自动化学报》 EI CSCD 北大核心 2010年第11期1575-1580,共6页
最近混淆网络在融合多个机器翻译结果中展示很好的性能.然而为了克服在不同的翻译系统中不同的词序,假设对齐在混淆网络的构建上仍然是一个重要的问题.但以往的对齐方法都没有考虑到语义信息.本文为了更好地改进系统融合的性能,提出了... 最近混淆网络在融合多个机器翻译结果中展示很好的性能.然而为了克服在不同的翻译系统中不同的词序,假设对齐在混淆网络的构建上仍然是一个重要的问题.但以往的对齐方法都没有考虑到语义信息.本文为了更好地改进系统融合的性能,提出了用词义消歧(Word sense disambiguation,WSD)来指导混淆网络中的对齐.同时骨架翻译的选择也是通过计算句子间的相似度来获得的,句子的相似性计算使用了二分图的最大匹配算法.为了使得基于WordNet词义消歧方法融入到系统中,本文将翻译错误率(Translation error rate,TER)算法进行了改进,实验结果显示本方法的性能好于经典的TER算法的性能. 展开更多
关键词 系统融合 翻译错误率 词义消歧 混淆网络
下载PDF
基于WordNet的本体澄清 被引量:4
12
作者 郭雷 方俊 王晓东 《计算机科学》 CSCD 北大核心 2008年第10期145-147,185,共4页
由于本体能够消除概念的混淆和重用知识,因此它的质量对于语义网技术的应用非常重要。为了提高本体的质量,很多的工作集中在概念建模,但是本体表示这个非常重要的方面一直被忽视。目前本体的表示使用的是词(term),但同一个词可能有很多... 由于本体能够消除概念的混淆和重用知识,因此它的质量对于语义网技术的应用非常重要。为了提高本体的质量,很多的工作集中在概念建模,但是本体表示这个非常重要的方面一直被忽视。目前本体的表示使用的是词(term),但同一个词可能有很多不同的意思,这样在基于本体的应用时将导致不清楚或错误的理解。为了解决这个问题,使用定义在WordNet中的词义(sense)而不是词来作为本体的表示,其原因是词义只有唯一的意思。本体澄清的定义为利用目标词周围的本体元素和被它标注的文档附近的词,对目标词进行自动消歧的过程。通过计算目标词义和它的邻居词的语义相似度,语义相关度最大的词义将选为正确的词义。实验表明,我们的算法有很好的性能。与最好的消歧算法相比,概念(Concept)精度差不多是名词精度的2倍,关系(Property)精度差不多是动词精度的3倍。实验证明了我们的算法在半自动的本体净化过程中也是非常有效的。 展开更多
关键词 本体澄清 语义相关度 消歧
下载PDF
基于Word Embedding语义相似度的字母缩略术语消歧 被引量:6
13
作者 于东 荀恩东 《中文信息学报》 CSCD 北大核心 2014年第5期51-59,共9页
该文提出基于Word Embedding的歧义词多个义项语义表示方法,实现基于知识库的无监督字母缩略术语消歧。方法分两步聚类,首先采用显著相似聚类获得高置信度类簇,构造带有语义标签的文档集作为训练数据。利用该数据训练多份Word Embeddin... 该文提出基于Word Embedding的歧义词多个义项语义表示方法,实现基于知识库的无监督字母缩略术语消歧。方法分两步聚类,首先采用显著相似聚类获得高置信度类簇,构造带有语义标签的文档集作为训练数据。利用该数据训练多份Word Embedding模型,以余弦相似度均值表示两个词之间的语义关系。在第二步聚类时,提出使用特征词扩展和语义线性加权来提高歧义分辨能力,提高消歧性能。该方法根据语义相似度扩展待消歧文档的特征词集合,挖掘聚类文档中缺失的语义信息,并使用语义相似度对特征词权重进行线性加权。针对25个多义缩略术语的消歧实验显示,特征词扩展使系统F值提高约4%,使用语义线性加权后F值再提高约2%,达到89.40%。 展开更多
关键词 字母缩略术语 术语消歧 word EMBEDDING 语义相似度
下载PDF
基于WordNet词义消歧的语义检索研究 被引量:8
14
作者 高雪霞 炎士涛 《湘潭大学自然科学学报》 北大核心 2017年第2期118-121,共4页
针对有监督和基于知识库的词义消歧问题,提出了一种新的基于Jaccard系数的词义消歧算法,以解决词义错误配对问题.利用WordNet知识库中的知识源表示歧义词的词义信息并生成词义资源库,结合提出的基于Jaccard系数词义消歧算法完成信息检索... 针对有监督和基于知识库的词义消歧问题,提出了一种新的基于Jaccard系数的词义消歧算法,以解决词义错误配对问题.利用WordNet知识库中的知识源表示歧义词的词义信息并生成词义资源库,结合提出的基于Jaccard系数词义消歧算法完成信息检索.试验测试结果显示,通过新的词义消歧算法,信息检索系统精确度比传统信息检索系统提高10%. 展开更多
关键词 词义消歧 信息检索 Jaccard系数 wordNET 查准率 查全率
下载PDF
英语语音合成中基于WordNet的多音词消歧算法 被引量:1
15
作者 王永生 李梅 《计算机工程与应用》 CSCD 北大核心 2008年第26期138-140,共3页
英语中的多音词分成两类,一是因词性不同而读音不同,一是因词义不同而读音不同。前者只需经词性标注,根据其词性标记就可判别其正确的读音。而后者则复杂得多,论文采用了一种基于WordNet语义信息的多音词消歧算法,该算法将多音词的语义... 英语中的多音词分成两类,一是因词性不同而读音不同,一是因词义不同而读音不同。前者只需经词性标注,根据其词性标记就可判别其正确的读音。而后者则复杂得多,论文采用了一种基于WordNet语义信息的多音词消歧算法,该算法将多音词的语义信息与上下文中词的语义信息进行匹配,根据匹配结果来判别多音词的读音。 展开更多
关键词 多音词消歧 词义消歧 语音合成
下载PDF
WNCT:一种WordNet概念自动翻译方法 被引量:6
16
作者 王石 曹存根 《中文信息学报》 CSCD 北大核心 2009年第4期63-70,94,共9页
WordNet是在自然语言处理领域有重要作用的英语词汇知识库,该文提出了一种将WordNet中词汇概念自动翻译为中文的方法。首先,利用电子词典和术语翻译工具将英语词汇在义项的粒度上翻译为中文;其次,将特定概念中词汇的正确义项选择看作分... WordNet是在自然语言处理领域有重要作用的英语词汇知识库,该文提出了一种将WordNet中词汇概念自动翻译为中文的方法。首先,利用电子词典和术语翻译工具将英语词汇在义项的粒度上翻译为中文;其次,将特定概念中词汇的正确义项选择看作分类问题,归纳出基于翻译唯一性、概念内和概念间翻译交集、中文短语结构规则,以及基于PMI的翻译相关性共12个特征,训练分类模型实现正确义项的选择。实验结果表明,该方法对WordNet 3.0中概念翻译的覆盖率为85.21%,准确率为81.37%。 展开更多
关键词 人工智能 机器翻译 wordNet翻译 词汇翻译 翻译消歧 中文词汇知识库 中文信息处理
下载PDF
基于WordNet的通用服务分类方法
17
作者 何佳 赵海燕 +2 位作者 陈庆奎 席丽娜 曹健 《计算机工程与科学》 CSCD 北大核心 2013年第9期157-161,共5页
随着服务技术的发展,越来越多的组织将业务功能作为服务通过网络对外发布。服务的增多导致人工对这些服务进行分类的成本越来越高。将文本挖掘、语义技术和机器学习技术相结合,提出了一个基于WordNet的服务自动分类方法。首先,利用文本... 随着服务技术的发展,越来越多的组织将业务功能作为服务通过网络对外发布。服务的增多导致人工对这些服务进行分类的成本越来越高。将文本挖掘、语义技术和机器学习技术相结合,提出了一个基于WordNet的服务自动分类方法。首先,利用文本挖掘技术和语义消歧技术,从服务的描述文档、社会化标注等获得可描述每个服务的一组有确切语义的Sense向量,本文选取的Sense向量是对每个API进行社会化标注的一组Tags。然后,利用K-均值聚类方法完成相应的分类。最后,以Programmable Web上的服务作为测试数据进行了实验,实验表明本方法具有较好的分类效果。 展开更多
关键词 服务 语义消歧 社会化标注 相似度 wordNET
下载PDF
一种基于WordNet的网页情境解析算法
18
作者 蔡劲松 邹汪平 《咸阳师范学院学报》 2015年第4期56-60,共5页
提出一种基于WordNet的网页情境解析算法。获取网页集并建立基于DOM树网页解析;获取网页正文、网页生成时间和更新时间;对网页集进行基于WordNet的词性标注和词义消歧;利用命名实体识别技术获取网页正文内的时间和地点信息,作为网页的... 提出一种基于WordNet的网页情境解析算法。获取网页集并建立基于DOM树网页解析;获取网页正文、网页生成时间和更新时间;对网页集进行基于WordNet的词性标注和词义消歧;利用命名实体识别技术获取网页正文内的时间和地点信息,作为网页的情境表示。经过实验对比,结果表明文中提出的方法和理论完全能够自动解析网页情境信息,为搜索提供巨大帮助。 展开更多
关键词 wordNET 词义消歧 情境表示 情境解析
下载PDF
基于HowNet义原和Word2vec词向量表示的多特征融合消歧方法 被引量:7
19
作者 王伟 赵尔平 +1 位作者 崔志远 孙浩 《计算机应用》 CSCD 北大核心 2021年第8期2193-2198,共6页
针对目前词向量表示低频词质量差,表示的语义信息容易混淆,以及现有的消歧模型对多义词不能准确区分等问题,提出一种基于词向量融合表示的多特征融合消歧方法。该方法将使用知网(HowNet)义原表示的词向量与Word2vec生成的词向量进行融... 针对目前词向量表示低频词质量差,表示的语义信息容易混淆,以及现有的消歧模型对多义词不能准确区分等问题,提出一种基于词向量融合表示的多特征融合消歧方法。该方法将使用知网(HowNet)义原表示的词向量与Word2vec生成的词向量进行融合来补全词的多义信息以及提高低频词的表示质量。首先计算待消歧实体与候选实体的余弦相似度来获得二者的相似度;其次使用聚类算法和知网知识库来获取实体类别特征相似度;然后利用改进的潜在狄利克雷分布(LDA)主题模型来抽取主题关键词以计算实体主题特征相似度,最后通过加权融合以上三类特征相似度实现多义词词义消歧。在西藏畜牧业领域测试集上进行的实验结果表明,所提方法的准确率(90.1%)比典型的图模型消歧方法提高了7.6个百分点。 展开更多
关键词 消歧 义原 词向量融合 特征融合 多义词
下载PDF
基于节点词全句共现的动态词义消歧研究
20
作者 闫亚亚 邢红兵 《语言科学》 CSSCI 北大核心 2024年第4期354-364,共11页
文章根据词义消歧即将词义回归语境这一特性,提出了一种基于节点词全句共现的动态词义消歧方法。该方法首先以全句为窗口限定节点词的使用语境,其次使用互信息(MI)、卡方检验(χ^(2)检验)和相对词序比(RRWR)等统计方法抽取节点词的语义... 文章根据词义消歧即将词义回归语境这一特性,提出了一种基于节点词全句共现的动态词义消歧方法。该方法首先以全句为窗口限定节点词的使用语境,其次使用互信息(MI)、卡方检验(χ^(2)检验)和相对词序比(RRWR)等统计方法抽取节点词的语义相关词,并参照《同义词词林》构建相关词语义范畴库,最后以共现频数作为加权系数,依靠单义词语义聚类分布率对中低频共现多义词进行消歧。采用该方法对与“美丽”共现的1030个小于7义类的多义词进行消歧的测试试验中取得了85.2%的正确率。 展开更多
关键词 节点词 全句共现 词义消歧 语义聚类 无指导学习
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部