The performance and particulate emission of a diesel engine are affected by the consumption of lubricating oil. Most studies on oil consumption mechanism of the cylinder have been done by using the experimental method...The performance and particulate emission of a diesel engine are affected by the consumption of lubricating oil. Most studies on oil consumption mechanism of the cylinder have been done by using the experimental method, however they are very costly. Therefore, it is very necessary to study oil consumption mechanism of the cylinder and obtain the accurate results by the calculation method. Firstly, four main modes of lubricating oil consumption in cylinder are analyzed and then the oil consumption rate under common working conditions are calculated for the four modes based on an engine. Then, the factors that affect the lubricating oil consumption such as working conditions, the second ring closed gap, the elastic force of the piston rings are also investigated for the four modes. The calculation results show that most of the lubricating oil is consumed by evaporation on the liner surface. Besides, there are three other findings: (1) The oil evaporation from the liner is determined by the working condition of an engine; (2) The increase of the ring closed gap reduces the oil blow through the top ring end gap but increases blow-by; (3) With the increase of the elastic force of the ring, both the left oil film thickness and the oil throw-off at the top ring decrease. The oil scraping of the piston top edge is consequently reduced while the friction loss between the rings and the liner increases. A neural network prediction model of the lubricating oil consumption in cylinder is established based on the BP neural network theory, and then the model is trained and validated. The main piston rings parameters which affect the oil consumption are optimized by using the BP neural network prediction model and the prediction accuracy of this BP neural network is within 8%, which is acceptable for normal engineering applications. The oil consumption is also measured experimentally. The relative errors of the calculated and experimental values are less than 10%, verifying the validity of the simulation results. Applying the established simulation model and the validated BP network model is able to generate numerical results with sufficient accuracy, which significantly reduces experimental work and provides guidance for the optimal design of the piston rings diesel engines.展开更多
It is of a vital importance to reduce the frictional losses in marine diesel engines. Advanced surface textures have provided an e ective solution to friction performance of rubbing pairs due to the rapid development ...It is of a vital importance to reduce the frictional losses in marine diesel engines. Advanced surface textures have provided an e ective solution to friction performance of rubbing pairs due to the rapid development of surface engineering techniques. However,the mechanisms through which textured patterns and texturing methods prove beneficial remains unclear. To address this issue,the tribological system of the cylinder liner?piston ring(CLPR) is investigated in this work. Two types of surface textures(Micro concave,Micro V?groove) are processed on the cylinder specimen using di erent processing methods. Comparative study on the friction coe cients,worn surface texture features and oil film characteristics are performed. The results demonstrate that the processing method of surface texture a ect the performance of the CLPR pairs under the specific testing conditions. In addition the micro V?groove processed by CNCPM is more favorable for improving the wear performances at the low load,while the micro?con?cave processed by CE is more favorable for improving the wear performances at the high load. These findings are in helping to understand the e ect of surface texture on wear performance of CLPR.展开更多
Based on the principles of heat transfer,an oil film model in the engine cylinder was established.Under the condition of cold state,the influence of factors such as engine fuel injection,fuel drop point,cylinder inne...Based on the principles of heat transfer,an oil film model in the engine cylinder was established.Under the condition of cold state,the influence of factors such as engine fuel injection,fuel drop point,cylinder inner wall temperature,and inlet fluid on the oil film is comprehensively considered to establish an oil film quality prediction model.Based on the measurement of the compensation oil quantity in the transition conditions,the variation of the oil film during the transition is analyzed.The experimental results show that the velocity of the air-flow in the intake port and the temperature and pressure on the wall of the intake port are the main factors affecting the oil film in the cylinder.Based on the abovementioned experimental and theoretical studies,an oil film distribution model for each cycle of the transition condition was established based on the engine inlet oil film model.The experimental measurement curve and model prediction curve for the fuel compensation per cycle in the transition condition from 10%load to 30%load.The model established can be in good agreement with the experimental results and meet the fuel compensation trend in the transition condition.While realizing the fuel compensation for the transient conditions,this work is definitely helpful to achieve accurate control of the air-fuel ratio.展开更多
This research proposes a component to restrict dust from entering an oil hydraulic system through the rod-seal clearance of an oil hydraulic cylinder.The oil hydraulic cylinder as one of main parts of the hydraulic sy...This research proposes a component to restrict dust from entering an oil hydraulic system through the rod-seal clearance of an oil hydraulic cylinder.The oil hydraulic cylinder as one of main parts of the hydraulic system,controls position of load by reciprocation.For example,on construction machines such as excavators and graders,the cylinder controls position of folk lift,crane and bucket.However,during operation,dust enters the cylinder,wears seals,causes fluid degradation and affects lubrication of valves,pumps and other parts of hydraulic system.This increases breakdown rate of cylinder and entire system.Thus,it seems necessary to reduce on intrusion of dust into the system via the hydraulic cylinder.In this research,we made an experimental apparatus to simulate intrusion of the dust into system.Results proved that the apparatus is a suitable simulator to realize the intrusion.The proposed component to restrict dust from entering cylinder was fabricated and its performance tested when inserted with various elastic rings.The component gave tremendous results when inserted with O-ring seal and a plastic nylon washer,and can be retrofitted on new and old hydraulic cylinders.It is an appropriate technology especially in developing countries where dust is still a major concern.展开更多
The electro-hydraulic servo drive hydraulic cylinder has many unique advantages, such as fast response, high load stiffness, high control power, strong anti-eccentric load ability and so on, so it has been widely used...The electro-hydraulic servo drive hydraulic cylinder has many unique advantages, such as fast response, high load stiffness, high control power, strong anti-eccentric load ability and so on, so it has been widely used in industrial control. Based on the guide sleeve of hydrostatic seal of hydraulic cylinder, the reasonable number of oil chamber of guide sleeve is studied in this paper. ICEM CFD software and FLUENT simulation software are used to calculate and analyze the number of different oil chambers of guide sleeve of hydrostatic seal. The temperature field of piston rod with different moving speed, different initial pressure of oil chamber and oil film under different number of oil chambers is analyzed. The relationship between the pressure field and temperature field provides a better basis for optimizing the design of hydrostatic guide sleeve and helps to improve the servo drive cylinder.展开更多
As a typical bionic walking robot, hydraulic quadruped robot has attracted much attention because of its high mobility, strong load capacity and steady motion. The electro-hydraulic servo cylinder, as its power actuat...As a typical bionic walking robot, hydraulic quadruped robot has attracted much attention because of its high mobility, strong load capacity and steady motion. The electro-hydraulic servo cylinder, as its power actuator, requires low friction, good lateral load resistance and high speed motion. The electro-hydraulic servo cylinder hydrostatic bearing seal guide sleeve is taken as the research object in this paper. By using Fluent software to analyze and contrast the film characteristics of rectangular and I-shaped oil chamber of hydrostatic bearing seal guide sleeve, the relationship between piston rod moving speed, eccentricity, oil film carrying capacity, friction force and leakage volume, as well as the relationship between oil feed flow and oil film bearing capacity, friction force, inlet pressure and leakage volume were analyzed. This study provides a theoretical basis for optimizing the static pressure bearing seal parameters.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50975192)Specialized Research Foundation for the Doctoral Program of Higher Education of China (Grant No.20090032110001)
文摘The performance and particulate emission of a diesel engine are affected by the consumption of lubricating oil. Most studies on oil consumption mechanism of the cylinder have been done by using the experimental method, however they are very costly. Therefore, it is very necessary to study oil consumption mechanism of the cylinder and obtain the accurate results by the calculation method. Firstly, four main modes of lubricating oil consumption in cylinder are analyzed and then the oil consumption rate under common working conditions are calculated for the four modes based on an engine. Then, the factors that affect the lubricating oil consumption such as working conditions, the second ring closed gap, the elastic force of the piston rings are also investigated for the four modes. The calculation results show that most of the lubricating oil is consumed by evaporation on the liner surface. Besides, there are three other findings: (1) The oil evaporation from the liner is determined by the working condition of an engine; (2) The increase of the ring closed gap reduces the oil blow through the top ring end gap but increases blow-by; (3) With the increase of the elastic force of the ring, both the left oil film thickness and the oil throw-off at the top ring decrease. The oil scraping of the piston top edge is consequently reduced while the friction loss between the rings and the liner increases. A neural network prediction model of the lubricating oil consumption in cylinder is established based on the BP neural network theory, and then the model is trained and validated. The main piston rings parameters which affect the oil consumption are optimized by using the BP neural network prediction model and the prediction accuracy of this BP neural network is within 8%, which is acceptable for normal engineering applications. The oil consumption is also measured experimentally. The relative errors of the calculated and experimental values are less than 10%, verifying the validity of the simulation results. Applying the established simulation model and the validated BP network model is able to generate numerical results with sufficient accuracy, which significantly reduces experimental work and provides guidance for the optimal design of the piston rings diesel engines.
基金Supported by National Natural Science Foundation of China(Grant No.51422507)Hubei Provincial Natural Science Foundation of China(Grant No.2015CFB372)+1 种基金Fundamental Research Funds for the Central Universities of China(Grant No.2015IVA010)Tribology Science Fund of State Key Laboratory of Tribology of China(Grant No.SKLTKF14B03)
文摘It is of a vital importance to reduce the frictional losses in marine diesel engines. Advanced surface textures have provided an e ective solution to friction performance of rubbing pairs due to the rapid development of surface engineering techniques. However,the mechanisms through which textured patterns and texturing methods prove beneficial remains unclear. To address this issue,the tribological system of the cylinder liner?piston ring(CLPR) is investigated in this work. Two types of surface textures(Micro concave,Micro V?groove) are processed on the cylinder specimen using di erent processing methods. Comparative study on the friction coe cients,worn surface texture features and oil film characteristics are performed. The results demonstrate that the processing method of surface texture a ect the performance of the CLPR pairs under the specific testing conditions. In addition the micro V?groove processed by CNCPM is more favorable for improving the wear performances at the low load,while the micro?con?cave processed by CE is more favorable for improving the wear performances at the high load. These findings are in helping to understand the e ect of surface texture on wear performance of CLPR.
文摘Based on the principles of heat transfer,an oil film model in the engine cylinder was established.Under the condition of cold state,the influence of factors such as engine fuel injection,fuel drop point,cylinder inner wall temperature,and inlet fluid on the oil film is comprehensively considered to establish an oil film quality prediction model.Based on the measurement of the compensation oil quantity in the transition conditions,the variation of the oil film during the transition is analyzed.The experimental results show that the velocity of the air-flow in the intake port and the temperature and pressure on the wall of the intake port are the main factors affecting the oil film in the cylinder.Based on the abovementioned experimental and theoretical studies,an oil film distribution model for each cycle of the transition condition was established based on the engine inlet oil film model.The experimental measurement curve and model prediction curve for the fuel compensation per cycle in the transition condition from 10%load to 30%load.The model established can be in good agreement with the experimental results and meet the fuel compensation trend in the transition condition.While realizing the fuel compensation for the transient conditions,this work is definitely helpful to achieve accurate control of the air-fuel ratio.
文摘This research proposes a component to restrict dust from entering an oil hydraulic system through the rod-seal clearance of an oil hydraulic cylinder.The oil hydraulic cylinder as one of main parts of the hydraulic system,controls position of load by reciprocation.For example,on construction machines such as excavators and graders,the cylinder controls position of folk lift,crane and bucket.However,during operation,dust enters the cylinder,wears seals,causes fluid degradation and affects lubrication of valves,pumps and other parts of hydraulic system.This increases breakdown rate of cylinder and entire system.Thus,it seems necessary to reduce on intrusion of dust into the system via the hydraulic cylinder.In this research,we made an experimental apparatus to simulate intrusion of the dust into system.Results proved that the apparatus is a suitable simulator to realize the intrusion.The proposed component to restrict dust from entering cylinder was fabricated and its performance tested when inserted with various elastic rings.The component gave tremendous results when inserted with O-ring seal and a plastic nylon washer,and can be retrofitted on new and old hydraulic cylinders.It is an appropriate technology especially in developing countries where dust is still a major concern.
基金supported by the National 863 Project(2011AA040701)
文摘The electro-hydraulic servo drive hydraulic cylinder has many unique advantages, such as fast response, high load stiffness, high control power, strong anti-eccentric load ability and so on, so it has been widely used in industrial control. Based on the guide sleeve of hydrostatic seal of hydraulic cylinder, the reasonable number of oil chamber of guide sleeve is studied in this paper. ICEM CFD software and FLUENT simulation software are used to calculate and analyze the number of different oil chambers of guide sleeve of hydrostatic seal. The temperature field of piston rod with different moving speed, different initial pressure of oil chamber and oil film under different number of oil chambers is analyzed. The relationship between the pressure field and temperature field provides a better basis for optimizing the design of hydrostatic guide sleeve and helps to improve the servo drive cylinder.
基金supported by the National 863 Project(2011AA040701)
文摘As a typical bionic walking robot, hydraulic quadruped robot has attracted much attention because of its high mobility, strong load capacity and steady motion. The electro-hydraulic servo cylinder, as its power actuator, requires low friction, good lateral load resistance and high speed motion. The electro-hydraulic servo cylinder hydrostatic bearing seal guide sleeve is taken as the research object in this paper. By using Fluent software to analyze and contrast the film characteristics of rectangular and I-shaped oil chamber of hydrostatic bearing seal guide sleeve, the relationship between piston rod moving speed, eccentricity, oil film carrying capacity, friction force and leakage volume, as well as the relationship between oil feed flow and oil film bearing capacity, friction force, inlet pressure and leakage volume were analyzed. This study provides a theoretical basis for optimizing the static pressure bearing seal parameters.