Monitoring the service condition of concrete structures requires the quantitative assessment of properties and corrosion rate of structural steels surrounded by concrete.A multi-cell sensor system that included a refe...Monitoring the service condition of concrete structures requires the quantitative assessment of properties and corrosion rate of structural steels surrounded by concrete.A multi-cell sensor system that included a reference electrode,a chloride content sensor,a macrocell current unit and an electrical resistance measurement unit was developed.This system provided the following important electrochemical data in the cover-zone concrete on site:open circuit potential,macrocell current from anodes to cathode,chloride profile,concrete resistance and corrosion rate of built-in anodes.The experimental results show that the macrocell current increases when the chloride content in concrete is higher.Thus,monitoring the chloride content is a good method for monitoring the corrosion state.The chloride ion content and cover depth are the key factors that affect the electrical resistance of concrete.Without considering the temperature and time,a simplified model of the instantaneous corrosion rate of steel rebar in a concrete structure based on the measured chloride contents and concrete resistance was proposed.The test results further prove the reliability of this simplified predicting model.展开更多
In this paper,crashworthiness performance of multi-cell conical tubes with new sectional configuration design(i.e.square,hexagonal,octagonal,decagon and circular)has been evaluated under axial and three different obli...In this paper,crashworthiness performance of multi-cell conical tubes with new sectional configuration design(i.e.square,hexagonal,octagonal,decagon and circular)has been evaluated under axial and three different oblique loads.The same weight conical tubes were comparatively studied using an experimentally validated finite element model generated in LS-DYNA.Complex proportional assessment(COPRAS)method was then employed to select the most efficient tube using two conflicting criteria,namely peak collapse force(PCF)and energy absorption(EA).From the COPRAS calculations,the multi-cell conical tube with decagonal cross-section(MCDT)showed the best crashworthiness performance.Furthermore,the effects of possible number of inside ribs on the crashworthiness of the decagonal conical tubes were also evaluated,and the results displayed that the tubes performed better as the number of ribs increased.Finally,parameters(the cone angle,θ,and ratio of the internal tube size to the external one,S)of MCDT were optimized by adopting artificial neural networks(ANN)and genetic algorithm(GA)techniques.Based on the multi-objective optimization results,the optimum dimension parameters were found to beθ=7.9o,S=0.46 andθ=8o,S=0.74 from the minimum distance selection(MDS)and COPRAS methods,respectively.展开更多
A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of th...A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of the received signal power in the mobile station, including both desired and interference signal power, has been introduced into the handover initiation algorithm. Along with the idea, we present three models of handover initiation algorithm with the shadowing process of Gaussian distribution. The formulation of handover initiation probability of those algorithms is also analyzed. The validity of the presented models has been checked through the comparison with simulation results. The results present the performance characteristics of handover initiation vary with cluster number and base-station antenna elevation angle.展开更多
Two Inter-cell Interference (ICI) management algorithms: Primary Interference Balancing (PIB) algorithm and Interfering Bits Loading Avoidance (IBLA) algorithm are proposed for canceling the ICI effects which the exis...Two Inter-cell Interference (ICI) management algorithms: Primary Interference Balancing (PIB) algorithm and Interfering Bits Loading Avoidance (IBLA) algorithm are proposed for canceling the ICI effects which the existing efficient radio resource allocation algorithms do not consider. The efficient radio resource allocation algorithm, i.e., Pre-assignment and Reassignment (PR) algorithm, obtains the lowest complexity and achieves good throughput performance in single cell OFDMA system. However, in multi-cell multi-sector OFDMA networks, PR algorithm is not applicable because it does not take ICI into consideration. The proposed PIB algorithm balances the number of loading bits for the desired User Equipment (UE) and the major interfering UE, as well as optimizes the SINR performance; meanwhile, IBLA avoids loading certain number of interfering bits which would make SINR unqualified. Simulations confirm the ICI management effectiveness and feasibility of both the proposals.展开更多
For the cooperative multi-cell systems with muki-user MIMO, a new limited feedback bit allocation scheme is proposed to minimize the rate loss caused by quantization error. In the proposed scheme, the Channel State In...For the cooperative multi-cell systems with muki-user MIMO, a new limited feedback bit allocation scheme is proposed to minimize the rate loss caused by quantization error. In the proposed scheme, the Channel State Information (CSI) feedback of cell-edge user for the local service cell and the adjacent interference cell are separately quantized. Based on the upper bound of the rate loss of cell-edge user due to the limited feedback, the number of feedback bits for quantized CSI of the local service cell and the adjacent cell are optimized with the fixed total bits of the limited feedback. The simulation shows that our proposed scheme of feedback bits allocation efficiently decreases the interference and increases the rate of systems compared with that of equal bits allocation and those of other allocations.展开更多
Fires,including wildfires,harm air quality and essential public services like transportation,communication,and utilities.These fires can also influence atmospheric conditions,including temperature and aerosols,potenti...Fires,including wildfires,harm air quality and essential public services like transportation,communication,and utilities.These fires can also influence atmospheric conditions,including temperature and aerosols,potentially affecting severe convective storms.Here,we investigate the remote impacts of fires in the western United States(WUS)on the occurrence of large hail(size:≥2.54 cm)in the central US(CUS)over the 20-year period of 2001–20 using the machine learning(ML),Random Forest(RF),and Extreme Gradient Boosting(XGB)methods.The developed RF and XGB models demonstrate high accuracy(>90%)and F1 scores of up to 0.78 in predicting large hail occurrences when WUS fires and CUS hailstorms coincide,particularly in four states(Wyoming,South Dakota,Nebraska,and Kansas).The key contributing variables identified from both ML models include the meteorological variables in the fire region(temperature and moisture),the westerly wind over the plume transport path,and the fire features(i.e.,the maximum fire power and burned area).The results confirm a linkage between WUS fires and severe weather in the CUS,corroborating the findings of our previous modeling study conducted on case simulations with a detailed physics model.展开更多
To further improve delay performance in multi-cell cellular edge computing systems,a new delay-driven joint communication and computing resource BP(backpressure)scheduling algorithm is proposed.Firstly,the mathematica...To further improve delay performance in multi-cell cellular edge computing systems,a new delay-driven joint communication and computing resource BP(backpressure)scheduling algorithm is proposed.Firstly,the mathematical models of the communication delay and computing delay in multi-cell cellular edge computing systems are established and expressed as virtual delay queues.Then,based on the virtual delay models,a novel joint wireless subcarrier and virtual machine resource scheduling algorithm is proposed to stabilize the virtual delay queues in the framework of the BP scheduling principle.Finally,the delay performance of the proposed virtual queue-based BP scheduling algorithm is evaluated via simulation experiments and compared with the traditional queue length-based BP scheduling algorithm.Results show that under the considered simulation parameters,the total delay of the proposed BP scheduling algorithm is always lower than that of the traditional queue length-based BP scheduling algorithm.The percentage of the reduced total delay can be as high as 51.29%when the computing resources are heterogeneously configured.Therefore,compared with the traditional queue length-based BP scheduling algorithms,the proposed virtual delay queue-based BP scheduling algorithm can further reduce delay in multi-cell cellular edge computing systems.展开更多
Due to the increase in the number of users, beam switching is used for suppressing interference, which leads to higher computational complexity in multi-cell millimeter wave communications. In order to resolve this pr...Due to the increase in the number of users, beam switching is used for suppressing interference, which leads to higher computational complexity in multi-cell millimeter wave communications. In order to resolve this problem, a beam interference model is introduced, and a lower complexity beam interference suppression algorithm based on user grouping is proposed. The proposed algorithm operates beam switching and mnlti-cell cooperative transmission for a part of the users when there exists beam interference due to high user density. In particular, considering the distinct interference suffered by each user, the proposed dual-threshold user grouping method can effectively solve the frequent switching problem at the base station caused by multi-cell cooperative transmission in multi-cell environments. Simulation results show that the proposed algorithm can reduce the computational complexity of beam switching and approach ideal system capacity, compared with conventional interference suppression algorithms that do not involve grouping of users.展开更多
In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load fo...In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load for four multi-cell polygonal tubes were derived by combining the Super Folding Element theory with Zhang’s research results.These formulae can be used to validate the numerical model and quickly evaluate the energy absorption ability of multi-cell polygonal tubes.Furthermore,a comparative study on the energy absorption performance of eight multi-cell polygonal tubes under axial and oblique loads was conducted.The results show that all tubes have a stable mixed deformation mode under axial load.The multi-cell decagon tube has better energy-absorption ability compared with other tubes.Whenθis less than 10°,all the tubes maintain a stable deformation mode,and the multi-cell decagon tube also has the biggest crushing force efficiency and specific energy absorption among these eight tubes;meanwhile compared with the results atθ=0°,the specific energy absorption of all tubes decreases by about 8%-21%,while the crushing force efficiency increases by 20%-56%.However,at large angles 20°and 30°,all of the tubes collapse in bending modes and lose their effectiveness at energy absorption.展开更多
The convergence of computation and communication at network edges plays a significant role in coping with computation-intensive and delay-critical tasks.During the stage of network planning,the resource provisioning p...The convergence of computation and communication at network edges plays a significant role in coping with computation-intensive and delay-critical tasks.During the stage of network planning,the resource provisioning problem for edge nodes has to be investigated to provide prior information for future system configurations.This work focuses on how to quantify the computation capabilities of access points at network edges when provisioning resources of computation and communication in multi-cell wireless networks.The problem is formulated as a discrete and non-convex minimization problem,where practical constraints including delay requirements,the inter-cell interference,and resource allocation strategies are considered.An iterative algorithm is also developed based on decomposition theory and fractional programming to solve this problem.The analysis shows that the necessary computation capability needed for certain delay guarantee depends on resource allocation strategies for delay-critical tasks.For delay-tolerant tasks,it can be approximately estimated by a derived lower bound which ignores the scheduling strategy.The efficiency of the proposed algorithm is demonstrated using numerical results.展开更多
This paper investigates a multi-cell uplink network,where the orthogonal frequency division multiplexing(OFDM)protocol is considered to mitigate the intra-cell interference.An optimization problem is formulated to max...This paper investigates a multi-cell uplink network,where the orthogonal frequency division multiplexing(OFDM)protocol is considered to mitigate the intra-cell interference.An optimization problem is formulated to maximize the user sup-porting ratio for the uplink multi-cell system by optimizing the transmit power.This paper adopts the user supporting ratio as the main performance metric.Our goal is to improve the user supporting ratio of each cell.Since the formulated optimization problem is non-convex,it cannot be solved by using traditional convex-based optimi-zation methods.Thus,a distributed method with low complexity and a small amount of multi-cell interaction is proposed.Numerical results show that a notable perfor-mance gain achieved by our proposed scheme compared with the traditional one is without inter-cell interaction.展开更多
Over-the-air computation(AirComp)based federated learning(FL)has been a promising technique for distilling artificial intelligence(AI)at the network edge.However,the performance of AirComp-based FL is decided by the d...Over-the-air computation(AirComp)based federated learning(FL)has been a promising technique for distilling artificial intelligence(AI)at the network edge.However,the performance of AirComp-based FL is decided by the device with the lowest channel gain due to the signal alignment property.More importantly,most existing work focuses on a single-cell scenario,where inter-cell interference is ignored.To overcome these shortages,a reconfigurable intelligent surface(RIS)-assisted AirComp-based FL system is proposed for multi-cell networks,where a RIS is used for enhancing the poor user signal caused by channel fading,especially for the device at the cell edge,and reducing inter-cell interference.The convergence of FL in the proposed system is first analyzed and the optimality gap for FL is derived.To minimize the optimality gap,we formulate a joint uplink and downlink optimization problem.The formulated problem is then divided into two separable nonconvex subproblems.Following the successive convex approximation(SCA)method,we first approximate the nonconvex term to a linear form,and then alternately optimize the beamforming vector and phase-shift matrix for each cell.Simulation results demonstrate the advantages of deploying a RIS in multi-cell networks and our proposed system significantly improves the performance of FL.展开更多
In this paper, a new inverter topology dedicated to isolated or grid-connected PV systems is proposed. This inverter is based on the structures of a stacked multi-cell converter (SMC) and an H-bridge. This new topolog...In this paper, a new inverter topology dedicated to isolated or grid-connected PV systems is proposed. This inverter is based on the structures of a stacked multi-cell converter (SMC) and an H-bridge. This new topology has allowed the voltage stresses of the converter to be distributed among several switching cells. Secondly, divide the input voltage into several fractions to reduce the number of power semiconductors to be switched. In this contribution, the general topology of this micro-inverter has been described and the simulation tests developed to validate its operation have been presented. Finally, we discussed the simulation results, the efficiency of this topology and the feasibility of its use in a grid-connected photovoltaic production system.展开更多
In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were prop...In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were proposed to mitigate interferences between the base stations (inter-cell). These schemes are categorized into linear and non-linear;this study focused on linear precoding schemes, which are grounded into three types, namely Zero Forcing (ZF), Block Diagonalization (BD), and Signal Leakage Noise Ratio (SLNR). The study included the Cooperative Multi-cell Multi Input Multi Output (MIMO) System, whereby each Base Station serves more than one mobile station and all Base Stations on the system are assisted by each other by shared the Channel State Information (CSI). Based on the Multi-Cell Multiuser MIMO system, each Base Station on the cell is intended to maximize the data transmission rate by its mobile users by increasing the Signal Interference to Noise Ratio after the interference has been mitigated due to the usefully of linear precoding schemes on the transmitter. Moreover, these schemes used different approaches to mitigate interference. This study mainly concentrates on evaluating the performance of these schemes through the channel distribution models such as Ray-leigh and Rician included in the presence of noise errors. The results show that the SLNR scheme outperforms ZF and BD schemes overall scenario. This implied that when the value of SNR increased the performance of SLNR increased by 21.4% and 45.7% for ZF and BD respectively.展开更多
[Objective] The Doppler radar data about a super monomer hailstorms in the northeastern Qinghai-Tibet Plateau in the Zhongchuan Airport in the Lanzhou City on September 6,2010 was studied.[Method] By dint of routine d...[Objective] The Doppler radar data about a super monomer hailstorms in the northeastern Qinghai-Tibet Plateau in the Zhongchuan Airport in the Lanzhou City on September 6,2010 was studied.[Method] By dint of routine data and radar data,the low vortex shear line type and the super monomer hailstorm around the Zhongchuan Airport in the Lanzhou City on September 6,2010 were expounded.Basic product and secondary product of Doppler radar were used in this process to reflect the characteristics of strong convection weather.Some characteristics of this process shall be explored.[Result] A small gush of cold air from the cold vortex of 500 hPa in the middle and high layer provided impacts.The warm shear line provided water vapor and energy in the 700 hPa.There was strong convective weather in the upper air.Such 10 minutes of hailstorm was rarely seen in the drought land in the northwest.The characteristics of the strong convection were distinct and typical.The front showed no echo form.However,it can not be reflected in 'strong wedge' in another form.In this process,characteristics of BWER and middle scale cyclone were distinct.And this was a typical hailstorm process caused by super monomer.[Conclusion] The study provided some helpful references for the forecast of strong convection weather in the Zhongchuan Airport in Lanzhou City.展开更多
By their definition, destructive hailstorms cause a great deal of damage to property and have been known to be fatal to humans. At present the long term changes in the frequency of these storms are unknown. Records of...By their definition, destructive hailstorms cause a great deal of damage to property and have been known to be fatal to humans. At present the long term changes in the frequency of these storms are unknown. Records of destructive hailstorms from many different sources in England and Wales go back for several centuries. Recently discovered records of over 30 destructive hailstorms have allowed a better description of hailstorm history since 1780. The data were grouped into 30, 40, and 50 year non-overlapping time periods in relation to time. Increases in their frequency in the 17th and 18th centuries were probably due to an increase in population and better recording. Since 1900 the frequency has significantly declined so that in the present 50 year time period only 22 have been recorded as compared with an average of 49 in both halves of the 19th century. The decline in frequency may be partly due to the big increase in particulate matter from aviation, which leads to a much higher concentration of ice and cloud condensation nuclei, resulting in fewer destructive hailstorms.展开更多
本文采用WRF4.2模式对2020年5月19日发生在贵阳的一次冰雹过程进行数值模拟,再现了冰雹云在贵阳市的移动路径和发展演变过程。通过对冰雹云不同发展阶段的动力、热力和云微物理特征的分析,以及冰雹混合比源汇项的收支分析,得到了冰雹形...本文采用WRF4.2模式对2020年5月19日发生在贵阳的一次冰雹过程进行数值模拟,再现了冰雹云在贵阳市的移动路径和发展演变过程。通过对冰雹云不同发展阶段的动力、热力和云微物理特征的分析,以及冰雹混合比源汇项的收支分析,得到了冰雹形成的微物理机制及概念模型。研究结果表明:(1)模拟的冰雹云在成熟阶段呈现典型的超级单体结构,存在悬垂回波和回波空洞。云内最大上升速度可达20 m s^(−1),上升气流从地面延伸至12 km,在高空西风的作用下向东流出,形成宽广的高空云砧。在上升气流后部中低层为强下沉气流。(2)雹胚粒子通过云冰碰冻雨滴形成,通过收集过冷云滴和雨滴增长,雹粒子的最大汇项是融化成雨水。(3)在冰雹云的成熟阶段,雹收集过冷云滴的效率增大,主要发生在强上升运动区中高层(6~10 km高度),大量雹粒子分布在上升运动区中高层以及悬垂回波区,最大混合比可达11 g kg^(−1)。(4)在冰雹云的消散阶段,云内上升速度减弱,高空云砧的范围扩大。雹粒子净转化效率降低,雹混合比减少。雹融化为雨水的效率增大,雨水分布质心降低,在近地面产生大量雨水。展开更多
基金Project(200632800003-11) supported by Western Communications Construction Scientific and Technological Project in China
文摘Monitoring the service condition of concrete structures requires the quantitative assessment of properties and corrosion rate of structural steels surrounded by concrete.A multi-cell sensor system that included a reference electrode,a chloride content sensor,a macrocell current unit and an electrical resistance measurement unit was developed.This system provided the following important electrochemical data in the cover-zone concrete on site:open circuit potential,macrocell current from anodes to cathode,chloride profile,concrete resistance and corrosion rate of built-in anodes.The experimental results show that the macrocell current increases when the chloride content in concrete is higher.Thus,monitoring the chloride content is a good method for monitoring the corrosion state.The chloride ion content and cover depth are the key factors that affect the electrical resistance of concrete.Without considering the temperature and time,a simplified model of the instantaneous corrosion rate of steel rebar in a concrete structure based on the measured chloride contents and concrete resistance was proposed.The test results further prove the reliability of this simplified predicting model.
基金Project(660)supported by University of Mohaghegh Ardabili,Iran
文摘In this paper,crashworthiness performance of multi-cell conical tubes with new sectional configuration design(i.e.square,hexagonal,octagonal,decagon and circular)has been evaluated under axial and three different oblique loads.The same weight conical tubes were comparatively studied using an experimentally validated finite element model generated in LS-DYNA.Complex proportional assessment(COPRAS)method was then employed to select the most efficient tube using two conflicting criteria,namely peak collapse force(PCF)and energy absorption(EA).From the COPRAS calculations,the multi-cell conical tube with decagonal cross-section(MCDT)showed the best crashworthiness performance.Furthermore,the effects of possible number of inside ribs on the crashworthiness of the decagonal conical tubes were also evaluated,and the results displayed that the tubes performed better as the number of ribs increased.Finally,parameters(the cone angle,θ,and ratio of the internal tube size to the external one,S)of MCDT were optimized by adopting artificial neural networks(ANN)and genetic algorithm(GA)techniques.Based on the multi-objective optimization results,the optimum dimension parameters were found to beθ=7.9o,S=0.46 andθ=8o,S=0.74 from the minimum distance selection(MDS)and COPRAS methods,respectively.
文摘A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of the received signal power in the mobile station, including both desired and interference signal power, has been introduced into the handover initiation algorithm. Along with the idea, we present three models of handover initiation algorithm with the shadowing process of Gaussian distribution. The formulation of handover initiation probability of those algorithms is also analyzed. The validity of the presented models has been checked through the comparison with simulation results. The results present the performance characteristics of handover initiation vary with cluster number and base-station antenna elevation angle.
基金supported by National Natural Science Foundation of China (NSFC) under Grant No. 60972075
文摘Two Inter-cell Interference (ICI) management algorithms: Primary Interference Balancing (PIB) algorithm and Interfering Bits Loading Avoidance (IBLA) algorithm are proposed for canceling the ICI effects which the existing efficient radio resource allocation algorithms do not consider. The efficient radio resource allocation algorithm, i.e., Pre-assignment and Reassignment (PR) algorithm, obtains the lowest complexity and achieves good throughput performance in single cell OFDMA system. However, in multi-cell multi-sector OFDMA networks, PR algorithm is not applicable because it does not take ICI into consideration. The proposed PIB algorithm balances the number of loading bits for the desired User Equipment (UE) and the major interfering UE, as well as optimizes the SINR performance; meanwhile, IBLA avoids loading certain number of interfering bits which would make SINR unqualified. Simulations confirm the ICI management effectiveness and feasibility of both the proposals.
基金Acknowledgements The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped to improve the quality of this paper. This work was supported partiaUy by the National Natural Science Foundation of China under Grant No. 60772110 Fundamental Research Funds for the Central Universities.
文摘For the cooperative multi-cell systems with muki-user MIMO, a new limited feedback bit allocation scheme is proposed to minimize the rate loss caused by quantization error. In the proposed scheme, the Channel State Information (CSI) feedback of cell-edge user for the local service cell and the adjacent interference cell are separately quantized. Based on the upper bound of the rate loss of cell-edge user due to the limited feedback, the number of feedback bits for quantized CSI of the local service cell and the adjacent cell are optimized with the fixed total bits of the limited feedback. The simulation shows that our proposed scheme of feedback bits allocation efficiently decreases the interference and increases the rate of systems compared with that of equal bits allocation and those of other allocations.
基金supported by the U.S.Department of Energy,Office of Science,Office of Biological and Environmental Research program as part of the Regional and Global Model Analysis and Multi-Sector Dynamics program areas(Award Number DE-SC0016605)Argonne National Laboratory is operated for the DOE by UChicago Argonne,LLC,under contract DE-AC02-06CH11357+1 种基金the National Energy Research Scientific Computing Center(NERSC)NERSC is a U.S.DOE Office of Science User Facility operated under Contract DE-AC02-05CH11231.
文摘Fires,including wildfires,harm air quality and essential public services like transportation,communication,and utilities.These fires can also influence atmospheric conditions,including temperature and aerosols,potentially affecting severe convective storms.Here,we investigate the remote impacts of fires in the western United States(WUS)on the occurrence of large hail(size:≥2.54 cm)in the central US(CUS)over the 20-year period of 2001–20 using the machine learning(ML),Random Forest(RF),and Extreme Gradient Boosting(XGB)methods.The developed RF and XGB models demonstrate high accuracy(>90%)and F1 scores of up to 0.78 in predicting large hail occurrences when WUS fires and CUS hailstorms coincide,particularly in four states(Wyoming,South Dakota,Nebraska,and Kansas).The key contributing variables identified from both ML models include the meteorological variables in the fire region(temperature and moisture),the westerly wind over the plume transport path,and the fire features(i.e.,the maximum fire power and burned area).The results confirm a linkage between WUS fires and severe weather in the CUS,corroborating the findings of our previous modeling study conducted on case simulations with a detailed physics model.
基金The National Natural Science Foundation of China(No.61571111)the Incubation Project of the National Natural Science Foundation of China at Nanjing University of Posts and Telecommunications(No.NY219106)
文摘To further improve delay performance in multi-cell cellular edge computing systems,a new delay-driven joint communication and computing resource BP(backpressure)scheduling algorithm is proposed.Firstly,the mathematical models of the communication delay and computing delay in multi-cell cellular edge computing systems are established and expressed as virtual delay queues.Then,based on the virtual delay models,a novel joint wireless subcarrier and virtual machine resource scheduling algorithm is proposed to stabilize the virtual delay queues in the framework of the BP scheduling principle.Finally,the delay performance of the proposed virtual queue-based BP scheduling algorithm is evaluated via simulation experiments and compared with the traditional queue length-based BP scheduling algorithm.Results show that under the considered simulation parameters,the total delay of the proposed BP scheduling algorithm is always lower than that of the traditional queue length-based BP scheduling algorithm.The percentage of the reduced total delay can be as high as 51.29%when the computing resources are heterogeneously configured.Therefore,compared with the traditional queue length-based BP scheduling algorithms,the proposed virtual delay queue-based BP scheduling algorithm can further reduce delay in multi-cell cellular edge computing systems.
基金This work was supported in part by the Program for Changjiang Scholars and Innovative Research Team in University under grant No. IRT16R72the National Natural Science Foundation of China under Grant No. 61440062.
文摘Due to the increase in the number of users, beam switching is used for suppressing interference, which leads to higher computational complexity in multi-cell millimeter wave communications. In order to resolve this problem, a beam interference model is introduced, and a lower complexity beam interference suppression algorithm based on user grouping is proposed. The proposed algorithm operates beam switching and mnlti-cell cooperative transmission for a part of the users when there exists beam interference due to high user density. In particular, considering the distinct interference suffered by each user, the proposed dual-threshold user grouping method can effectively solve the frequent switching problem at the base station caused by multi-cell cooperative transmission in multi-cell environments. Simulation results show that the proposed algorithm can reduce the computational complexity of beam switching and approach ideal system capacity, compared with conventional interference suppression algorithms that do not involve grouping of users.
基金Projects(U1334208,51405516,51275532)supported by the National Natural Science Foundation of ChinaProjects(2015zzts210,2016zzts331)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load for four multi-cell polygonal tubes were derived by combining the Super Folding Element theory with Zhang’s research results.These formulae can be used to validate the numerical model and quickly evaluate the energy absorption ability of multi-cell polygonal tubes.Furthermore,a comparative study on the energy absorption performance of eight multi-cell polygonal tubes under axial and oblique loads was conducted.The results show that all tubes have a stable mixed deformation mode under axial load.The multi-cell decagon tube has better energy-absorption ability compared with other tubes.Whenθis less than 10°,all the tubes maintain a stable deformation mode,and the multi-cell decagon tube also has the biggest crushing force efficiency and specific energy absorption among these eight tubes;meanwhile compared with the results atθ=0°,the specific energy absorption of all tubes decreases by about 8%-21%,while the crushing force efficiency increases by 20%-56%.However,at large angles 20°and 30°,all of the tubes collapse in bending modes and lose their effectiveness at energy absorption.
基金Supported by the Shanghai Sailing Program(No.18YF1427900)the National Natural Science Foundation of China(No.61471347)the Shanghai Pujiang Program(No.2020PJD081).
文摘The convergence of computation and communication at network edges plays a significant role in coping with computation-intensive and delay-critical tasks.During the stage of network planning,the resource provisioning problem for edge nodes has to be investigated to provide prior information for future system configurations.This work focuses on how to quantify the computation capabilities of access points at network edges when provisioning resources of computation and communication in multi-cell wireless networks.The problem is formulated as a discrete and non-convex minimization problem,where practical constraints including delay requirements,the inter-cell interference,and resource allocation strategies are considered.An iterative algorithm is also developed based on decomposition theory and fractional programming to solve this problem.The analysis shows that the necessary computation capability needed for certain delay guarantee depends on resource allocation strategies for delay-critical tasks.For delay-tolerant tasks,it can be approximately estimated by a derived lower bound which ignores the scheduling strategy.The efficiency of the proposed algorithm is demonstrated using numerical results.
文摘This paper investigates a multi-cell uplink network,where the orthogonal frequency division multiplexing(OFDM)protocol is considered to mitigate the intra-cell interference.An optimization problem is formulated to maximize the user sup-porting ratio for the uplink multi-cell system by optimizing the transmit power.This paper adopts the user supporting ratio as the main performance metric.Our goal is to improve the user supporting ratio of each cell.Since the formulated optimization problem is non-convex,it cannot be solved by using traditional convex-based optimi-zation methods.Thus,a distributed method with low complexity and a small amount of multi-cell interaction is proposed.Numerical results show that a notable perfor-mance gain achieved by our proposed scheme compared with the traditional one is without inter-cell interaction.
文摘Over-the-air computation(AirComp)based federated learning(FL)has been a promising technique for distilling artificial intelligence(AI)at the network edge.However,the performance of AirComp-based FL is decided by the device with the lowest channel gain due to the signal alignment property.More importantly,most existing work focuses on a single-cell scenario,where inter-cell interference is ignored.To overcome these shortages,a reconfigurable intelligent surface(RIS)-assisted AirComp-based FL system is proposed for multi-cell networks,where a RIS is used for enhancing the poor user signal caused by channel fading,especially for the device at the cell edge,and reducing inter-cell interference.The convergence of FL in the proposed system is first analyzed and the optimality gap for FL is derived.To minimize the optimality gap,we formulate a joint uplink and downlink optimization problem.The formulated problem is then divided into two separable nonconvex subproblems.Following the successive convex approximation(SCA)method,we first approximate the nonconvex term to a linear form,and then alternately optimize the beamforming vector and phase-shift matrix for each cell.Simulation results demonstrate the advantages of deploying a RIS in multi-cell networks and our proposed system significantly improves the performance of FL.
文摘In this paper, a new inverter topology dedicated to isolated or grid-connected PV systems is proposed. This inverter is based on the structures of a stacked multi-cell converter (SMC) and an H-bridge. This new topology has allowed the voltage stresses of the converter to be distributed among several switching cells. Secondly, divide the input voltage into several fractions to reduce the number of power semiconductors to be switched. In this contribution, the general topology of this micro-inverter has been described and the simulation tests developed to validate its operation have been presented. Finally, we discussed the simulation results, the efficiency of this topology and the feasibility of its use in a grid-connected photovoltaic production system.
文摘In Mobile Communication Systems, inter-cell interference becomes one of the challenges that degrade the system’s performance, especially in the region with massive mobile users. The linear precoding schemes were proposed to mitigate interferences between the base stations (inter-cell). These schemes are categorized into linear and non-linear;this study focused on linear precoding schemes, which are grounded into three types, namely Zero Forcing (ZF), Block Diagonalization (BD), and Signal Leakage Noise Ratio (SLNR). The study included the Cooperative Multi-cell Multi Input Multi Output (MIMO) System, whereby each Base Station serves more than one mobile station and all Base Stations on the system are assisted by each other by shared the Channel State Information (CSI). Based on the Multi-Cell Multiuser MIMO system, each Base Station on the cell is intended to maximize the data transmission rate by its mobile users by increasing the Signal Interference to Noise Ratio after the interference has been mitigated due to the usefully of linear precoding schemes on the transmitter. Moreover, these schemes used different approaches to mitigate interference. This study mainly concentrates on evaluating the performance of these schemes through the channel distribution models such as Ray-leigh and Rician included in the presence of noise errors. The results show that the SLNR scheme outperforms ZF and BD schemes overall scenario. This implied that when the value of SNR increased the performance of SLNR increased by 21.4% and 45.7% for ZF and BD respectively.
文摘[Objective] The Doppler radar data about a super monomer hailstorms in the northeastern Qinghai-Tibet Plateau in the Zhongchuan Airport in the Lanzhou City on September 6,2010 was studied.[Method] By dint of routine data and radar data,the low vortex shear line type and the super monomer hailstorm around the Zhongchuan Airport in the Lanzhou City on September 6,2010 were expounded.Basic product and secondary product of Doppler radar were used in this process to reflect the characteristics of strong convection weather.Some characteristics of this process shall be explored.[Result] A small gush of cold air from the cold vortex of 500 hPa in the middle and high layer provided impacts.The warm shear line provided water vapor and energy in the 700 hPa.There was strong convective weather in the upper air.Such 10 minutes of hailstorm was rarely seen in the drought land in the northwest.The characteristics of the strong convection were distinct and typical.The front showed no echo form.However,it can not be reflected in 'strong wedge' in another form.In this process,characteristics of BWER and middle scale cyclone were distinct.And this was a typical hailstorm process caused by super monomer.[Conclusion] The study provided some helpful references for the forecast of strong convection weather in the Zhongchuan Airport in Lanzhou City.
文摘By their definition, destructive hailstorms cause a great deal of damage to property and have been known to be fatal to humans. At present the long term changes in the frequency of these storms are unknown. Records of destructive hailstorms from many different sources in England and Wales go back for several centuries. Recently discovered records of over 30 destructive hailstorms have allowed a better description of hailstorm history since 1780. The data were grouped into 30, 40, and 50 year non-overlapping time periods in relation to time. Increases in their frequency in the 17th and 18th centuries were probably due to an increase in population and better recording. Since 1900 the frequency has significantly declined so that in the present 50 year time period only 22 have been recorded as compared with an average of 49 in both halves of the 19th century. The decline in frequency may be partly due to the big increase in particulate matter from aviation, which leads to a much higher concentration of ice and cloud condensation nuclei, resulting in fewer destructive hailstorms.
文摘本文采用WRF4.2模式对2020年5月19日发生在贵阳的一次冰雹过程进行数值模拟,再现了冰雹云在贵阳市的移动路径和发展演变过程。通过对冰雹云不同发展阶段的动力、热力和云微物理特征的分析,以及冰雹混合比源汇项的收支分析,得到了冰雹形成的微物理机制及概念模型。研究结果表明:(1)模拟的冰雹云在成熟阶段呈现典型的超级单体结构,存在悬垂回波和回波空洞。云内最大上升速度可达20 m s^(−1),上升气流从地面延伸至12 km,在高空西风的作用下向东流出,形成宽广的高空云砧。在上升气流后部中低层为强下沉气流。(2)雹胚粒子通过云冰碰冻雨滴形成,通过收集过冷云滴和雨滴增长,雹粒子的最大汇项是融化成雨水。(3)在冰雹云的成熟阶段,雹收集过冷云滴的效率增大,主要发生在强上升运动区中高层(6~10 km高度),大量雹粒子分布在上升运动区中高层以及悬垂回波区,最大混合比可达11 g kg^(−1)。(4)在冰雹云的消散阶段,云内上升速度减弱,高空云砧的范围扩大。雹粒子净转化效率降低,雹混合比减少。雹融化为雨水的效率增大,雨水分布质心降低,在近地面产生大量雨水。