This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection...This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection transmission schemes,named random sub-channel selection(RSS)scheme and maximum sub-channel selection(MSS)scheme,to enhance communication covertness.For each proposed scheme,we first derive closed-form expressions of the transmission outage probability(TOP),the average effective rate,and the minimum average detection error probability(DEP).Then,the average effective covert rate(ECR)is maximized by jointly optimizing the transmit power at the transmitter and the number of sub-channels.Numerical results show that there is an optimal value of the number of sub-channels that maximizes the average ECR.We also find that to achieve the maximum average ECR,a larger number of subchannels are needed facing a stricter covertness constraint.展开更多
An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced w...An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications.展开更多
Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate ...Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.展开更多
Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC...Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC semiconductor device,an instrumentation amplifier(IA),two resistors,and a diode for disconnection detection.Based on the basic circuit,a multi-channel interface circuit was also implemented.The CJC was implemented using compensation semiconductor and IA,and disconnection detection was detected by using two resistors and a diode so that IA input voltage became-0.42 V.As a result of the experiment using R-type TC,the error of the designed circuit was reduced from 0.14 mV to 3μV after CJC in the temperature range of 0°C to 1400°C.In addition,it was confirmed that the output voltage of IA was saturated from 88 mV to-14.2 V when TC was disconnected from normal.The output voltage of the designed circuit was 0 V to 10 V in the temperature range of 0°C to 1400°C.The results of the 4-channel interface experiment using R-type TC were almost identical to the CJC and disconnection detection results for each channel.The implemented multi-channel interface has a feature that can be applied equally to E,J,K,T,R,and S-type TCs by changing the terminals of CJC semiconductor devices and adjusting the IA gain.展开更多
Most of existing metasurfaces usually have limited channel behavior,which seriouslyhinders their development and application.In this paper,we propose a multi-channel terahertz focused beam generator based on shared-ap...Most of existing metasurfaces usually have limited channel behavior,which seriouslyhinders their development and application.In this paper,we propose a multi-channel terahertz focused beam generator based on shared-aperture metasurface,and the generator consists of a top square metal strip,a middle layer of silica and a metal bottom plate.By changing the position and size of the shared-aperture array,the designed metasurface can generate any number of multi-channel focusing beams at different predicted positions.In addition,the energy intensity of focusing beams can be controlled.The full-wave simulation results show that the metasurface achieves four-channel vortex focused beam generation with different topological charges,and five-,six-,eight-channel focused beam generation with different energy intensities at a frequency of 1 THz,which are in good agreement with the theoretically calculated predictions.This work can provide a new idea for designing the terahertz multichannel devices.展开更多
Classical multi-channel technology can significantly reduce the pre-stack seismic inversion uncertainty, especially for complex geology such as high dipping structures. However, due to the consideration of complex str...Classical multi-channel technology can significantly reduce the pre-stack seismic inversion uncertainty, especially for complex geology such as high dipping structures. However, due to the consideration of complex structure or reflection features, the existing multi-channel inversion methods have to adopt the highly time-consuming strategy of arranging seismic data trace-by-trace, limiting its wide application in pre-stack inversion. A fast pre-stack multi-channel inversion constrained by seismic reflection features has been proposed to address this issue. The key to our method is to re-characterize the reflection features to directly constrain the pre-stack inversion through a Hadamard product operator without rearranging the seismic data. The seismic reflection features can reflect the distribution of the stratum reflection interface, and we obtained them from the post-stack profile by searching the shortest local Euclidean distance between adjacent seismic traces. Instead of directly constructing a large-size reflection features constraint operator advocated by the conventional methods, through decomposing the reflection features along the vertical and horizontal direction at a particular sampling point, we have constructed a computationally well-behaved constraint operator represented by the vertical and horizontal partial derivatives. Based on the Alternating Direction Method of Multipliers (ADMM) optimization, we have derived a fast algorithm for solving the objective function, including Hadamard product operators. Compared with the conventional reflection features constrained inversion, the proposed method is more efficient and accurate, proved on the Overthrust model and a field data set.展开更多
In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the ...In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the etched tracks from radon alpha particles on this detector are usually counted by means of an optical microscope or a spark counter. An optimal reading of the track densities which must be converted into radon concentrations, can’t be done without a good mastery of the mode of operation and use of these devices. Furthermore, investigations to know as to whether or not each of those can be used to determine radon concentration are necessary. These are the objectives of the present work in which LR 115 samples exposed to radon for at least 3 months, were chemically developed under standard conditions and read. The track densities obtained with the microscope are very much higher than those of the counter for each sample. These results are consistent with those published by other authors. However, each of these devices can be used interchangeably for alpha tracks counting, as both provide radon concentrations with a very good linear correlation coefficient of 0.95 taking into account their respective calibration factors for the reading of this detector. In addition, the saturation phenomenon for the spark counter reading of LR 115 detector occurs beyond 11,000 tr/cm<sup>2</sup>, a density never reached during our environmental radon measurements.展开更多
Due to the scattered nature of the network,data transmission in a dis-tributed Mobile Ad-hoc Network(MANET)consumes more energy resources(ER)than in a centralized network,resulting in a shorter network lifespan(NL).As...Due to the scattered nature of the network,data transmission in a dis-tributed Mobile Ad-hoc Network(MANET)consumes more energy resources(ER)than in a centralized network,resulting in a shorter network lifespan(NL).As a result,we build an Enhanced Opportunistic Routing(EORP)protocol architecture in order to address the issues raised before.This proposed routing protocol goal is to manage the routing cost by employing power,load,and delay to manage the routing energy consumption based on theflooding of control pack-ets from the target node.According to the goal of the proposed protocol techni-que,it is possible to manage the routing cost by applying power,load,and delay.The proposed technique also manage the routing energy consumption based on theflooding of control packets from the destination node in order to reduce the routing cost.Control packet exchange between the target and all the nodes,on the other hand,is capable of having an influence on the overall efficiency of the system.The EORP protocol and the Multi-channel Cooperative Neighbour Discovery(MCCND)protocol have been designed to detect the cooperative adja-cent nodes for each node in the routing route as part of the routing path discovery process,which occurs during control packet transmission.While control packet transmission is taking place during the routing path discovery process,the EORP protocol and the Multi-channel Cooperative Neighbour Discovery(MCCND)protocol have been designed to detect the cooperative adjacent nodes for each node in the routing.Also included is a simulation of these protocols in order to evaluate their performance across a wide range of packet speeds using Constant Bit Rate(CBR).When the packet rate of the CBR is 20 packets per second,the results reveal that the EORP-MCCND is 0.6 s quicker than the state-of-the-art protocols,according to thefindings.Assuming that the CBR packet rate is 20 packets per second,the EORP-MCCND achieves 0.6 s of End 2 End Delay,0.05 s of Routing Overhead Delay,120 s of Network Lifetime,and 20 J of Energy Consumption efficiency,which is much better than that of the state-of-the-art protocols.展开更多
Taking a propfan engine as the research object,the CFD method was used for 3D modeling and unsteady slip flow for numerical calculation.The propfan rotation domain and the nacelle outside flow domain were meshed by us...Taking a propfan engine as the research object,the CFD method was used for 3D modeling and unsteady slip flow for numerical calculation.The propfan rotation domain and the nacelle outside flow domain were meshed by using the partition splicing grid technology.Used the Reynolds⁃averaged of N⁃S equation,the Reynolds stress term uses the RNG turbulence model;and based on the slip grid method,numerical calculation of the flow field with different Mach numbers,front and rear blade angles and engine state were carried out;and the change law of propeller fan characteristics and the influence of slip flow on the inlet flow field were analyzed.The blade angle was the key parameter of the propeller fan characteristic conditions.When the blade angle increases from 41°to 50°,the thrust coefficient increases by 31.2%,and the power coefficient increases by 33.4%;in the climbing state of the propeller fan,the maximum total pressure distortion at the inlet port of 6.8%;the cross section is less affected by the slip flow of the propfan;and the pressure distribution is relatively uniform,but the area of the flow channel is small.The research results can provide a solution for the matching of the counter⁃rotating propeller fan and the engine and the arrangement of the air inlet measuring rake.展开更多
文摘This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection transmission schemes,named random sub-channel selection(RSS)scheme and maximum sub-channel selection(MSS)scheme,to enhance communication covertness.For each proposed scheme,we first derive closed-form expressions of the transmission outage probability(TOP),the average effective rate,and the minimum average detection error probability(DEP).Then,the average effective covert rate(ECR)is maximized by jointly optimizing the transmit power at the transmitter and the number of sub-channels.Numerical results show that there is an optimal value of the number of sub-channels that maximizes the average ECR.We also find that to achieve the maximum average ECR,a larger number of subchannels are needed facing a stricter covertness constraint.
基金financial support from the National Key R&D Program(2023YFE0108000)the Academy of Sciences Project of Guangdong Province(2019GDASYL-0102007,2021GDASYL-20210103063)+1 种基金GDAS’Project of Science and Technology Development(2022GDASZH-2022010203-003)financial support from the China Scholarship Council(202108210128)。
文摘An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications.
文摘Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.
文摘Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC semiconductor device,an instrumentation amplifier(IA),two resistors,and a diode for disconnection detection.Based on the basic circuit,a multi-channel interface circuit was also implemented.The CJC was implemented using compensation semiconductor and IA,and disconnection detection was detected by using two resistors and a diode so that IA input voltage became-0.42 V.As a result of the experiment using R-type TC,the error of the designed circuit was reduced from 0.14 mV to 3μV after CJC in the temperature range of 0°C to 1400°C.In addition,it was confirmed that the output voltage of IA was saturated from 88 mV to-14.2 V when TC was disconnected from normal.The output voltage of the designed circuit was 0 V to 10 V in the temperature range of 0°C to 1400°C.The results of the 4-channel interface experiment using R-type TC were almost identical to the CJC and disconnection detection results for each channel.The implemented multi-channel interface has a feature that can be applied equally to E,J,K,T,R,and S-type TCs by changing the terminals of CJC semiconductor devices and adjusting the IA gain.
基金Project supported by the National Natural Science Foundation of China (Grant No.62271460)the Zhejiang Key Research and Development Project,China (Grant Nos.2021C03153 and 2022C03166)。
文摘Most of existing metasurfaces usually have limited channel behavior,which seriouslyhinders their development and application.In this paper,we propose a multi-channel terahertz focused beam generator based on shared-aperture metasurface,and the generator consists of a top square metal strip,a middle layer of silica and a metal bottom plate.By changing the position and size of the shared-aperture array,the designed metasurface can generate any number of multi-channel focusing beams at different predicted positions.In addition,the energy intensity of focusing beams can be controlled.The full-wave simulation results show that the metasurface achieves four-channel vortex focused beam generation with different topological charges,and five-,six-,eight-channel focused beam generation with different energy intensities at a frequency of 1 THz,which are in good agreement with the theoretically calculated predictions.This work can provide a new idea for designing the terahertz multichannel devices.
基金We would like to acknowledge the sponsorship of the National Natural Science Foundation of China(42004092,42030103,41974119)Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(Grant No.2021QNLM020001-6)Young Elite Scientists Sponsorship Program by CAST(2021QNRC001).
文摘Classical multi-channel technology can significantly reduce the pre-stack seismic inversion uncertainty, especially for complex geology such as high dipping structures. However, due to the consideration of complex structure or reflection features, the existing multi-channel inversion methods have to adopt the highly time-consuming strategy of arranging seismic data trace-by-trace, limiting its wide application in pre-stack inversion. A fast pre-stack multi-channel inversion constrained by seismic reflection features has been proposed to address this issue. The key to our method is to re-characterize the reflection features to directly constrain the pre-stack inversion through a Hadamard product operator without rearranging the seismic data. The seismic reflection features can reflect the distribution of the stratum reflection interface, and we obtained them from the post-stack profile by searching the shortest local Euclidean distance between adjacent seismic traces. Instead of directly constructing a large-size reflection features constraint operator advocated by the conventional methods, through decomposing the reflection features along the vertical and horizontal direction at a particular sampling point, we have constructed a computationally well-behaved constraint operator represented by the vertical and horizontal partial derivatives. Based on the Alternating Direction Method of Multipliers (ADMM) optimization, we have derived a fast algorithm for solving the objective function, including Hadamard product operators. Compared with the conventional reflection features constrained inversion, the proposed method is more efficient and accurate, proved on the Overthrust model and a field data set.
文摘In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the etched tracks from radon alpha particles on this detector are usually counted by means of an optical microscope or a spark counter. An optimal reading of the track densities which must be converted into radon concentrations, can’t be done without a good mastery of the mode of operation and use of these devices. Furthermore, investigations to know as to whether or not each of those can be used to determine radon concentration are necessary. These are the objectives of the present work in which LR 115 samples exposed to radon for at least 3 months, were chemically developed under standard conditions and read. The track densities obtained with the microscope are very much higher than those of the counter for each sample. These results are consistent with those published by other authors. However, each of these devices can be used interchangeably for alpha tracks counting, as both provide radon concentrations with a very good linear correlation coefficient of 0.95 taking into account their respective calibration factors for the reading of this detector. In addition, the saturation phenomenon for the spark counter reading of LR 115 detector occurs beyond 11,000 tr/cm<sup>2</sup>, a density never reached during our environmental radon measurements.
文摘Due to the scattered nature of the network,data transmission in a dis-tributed Mobile Ad-hoc Network(MANET)consumes more energy resources(ER)than in a centralized network,resulting in a shorter network lifespan(NL).As a result,we build an Enhanced Opportunistic Routing(EORP)protocol architecture in order to address the issues raised before.This proposed routing protocol goal is to manage the routing cost by employing power,load,and delay to manage the routing energy consumption based on theflooding of control pack-ets from the target node.According to the goal of the proposed protocol techni-que,it is possible to manage the routing cost by applying power,load,and delay.The proposed technique also manage the routing energy consumption based on theflooding of control packets from the destination node in order to reduce the routing cost.Control packet exchange between the target and all the nodes,on the other hand,is capable of having an influence on the overall efficiency of the system.The EORP protocol and the Multi-channel Cooperative Neighbour Discovery(MCCND)protocol have been designed to detect the cooperative adja-cent nodes for each node in the routing route as part of the routing path discovery process,which occurs during control packet transmission.While control packet transmission is taking place during the routing path discovery process,the EORP protocol and the Multi-channel Cooperative Neighbour Discovery(MCCND)protocol have been designed to detect the cooperative adjacent nodes for each node in the routing.Also included is a simulation of these protocols in order to evaluate their performance across a wide range of packet speeds using Constant Bit Rate(CBR).When the packet rate of the CBR is 20 packets per second,the results reveal that the EORP-MCCND is 0.6 s quicker than the state-of-the-art protocols,according to thefindings.Assuming that the CBR packet rate is 20 packets per second,the EORP-MCCND achieves 0.6 s of End 2 End Delay,0.05 s of Routing Overhead Delay,120 s of Network Lifetime,and 20 J of Energy Consumption efficiency,which is much better than that of the state-of-the-art protocols.
文摘Taking a propfan engine as the research object,the CFD method was used for 3D modeling and unsteady slip flow for numerical calculation.The propfan rotation domain and the nacelle outside flow domain were meshed by using the partition splicing grid technology.Used the Reynolds⁃averaged of N⁃S equation,the Reynolds stress term uses the RNG turbulence model;and based on the slip grid method,numerical calculation of the flow field with different Mach numbers,front and rear blade angles and engine state were carried out;and the change law of propeller fan characteristics and the influence of slip flow on the inlet flow field were analyzed.The blade angle was the key parameter of the propeller fan characteristic conditions.When the blade angle increases from 41°to 50°,the thrust coefficient increases by 31.2%,and the power coefficient increases by 33.4%;in the climbing state of the propeller fan,the maximum total pressure distortion at the inlet port of 6.8%;the cross section is less affected by the slip flow of the propfan;and the pressure distribution is relatively uniform,but the area of the flow channel is small.The research results can provide a solution for the matching of the counter⁃rotating propeller fan and the engine and the arrangement of the air inlet measuring rake.