A data acquisition system based on LabVIEW and NI PXI-5105 is presented for multi-channel data acquisition. It can realize the functions of parameter setting, data acquisition and storage, waveform display and data an...A data acquisition system based on LabVIEW and NI PXI-5105 is presented for multi-channel data acquisition. It can realize the functions of parameter setting, data acquisition and storage, waveform display and data analysis using LabVIEW and NI-SCOPE device driver. The advantages of the system are that the setting is convenient, the operation is easy, the interface is friendly and the functions are practical. The experiment results show that the system has good stability and high reliability and is a powerful tool for multi-channel data acquisition.展开更多
A data acquisition system (DAS) to implement high-speed, real-time and multi-channel data acquisition and store is presented. The control of the system is implemented by the combination of complex programable logic ...A data acquisition system (DAS) to implement high-speed, real-time and multi-channel data acquisition and store is presented. The control of the system is implemented by the combination of complex programable logic device (CPLD) and digital signal processing (DSP), the bulk buffer of the system is implemented by the combination of CPLD, DSP, and synchronous dynamic random access memory (SDRAM), and the data transfer is implemented by the combination of DSP, first in first out (FIFO), universal serial bus (USB) and USB hub. The system could not only work independently in single-channel mode, but also implement high-speed real-time multi-channel data acquisition system (MCDAS) by the combination of multiple single-channels. The sampling rate and data storage capacity of each channel could reach up to 100 million sampiing per second and 256 MB respectively.展开更多
This paper describes the detailed desi gn of data acquisition device with multi-channel and high-precision for aerosp ace.Based on detailed analysis of the advantages and disadvantages of tw o common acquisition circu...This paper describes the detailed desi gn of data acquisition device with multi-channel and high-precision for aerosp ace.Based on detailed analysis of the advantages and disadvantages of tw o common acquisition circuits,the design factors of acquisition device focus o n accuracy,sampling rate,hardware overhead and design space.The me chanical structure of the system is divided into different card layers according to different functions and the structure has the characteristics of high reliability,conveni ence to install and scalability.To ens ure reliable operation mode,the interface uses the optocoupler isolated from th e e xternal circuit.The transmission of signal is decided by the current in the cur rent loop that consists of optocouplers between acquisition device and t est bench.In multi-channel switching circuit,by establ ishing analog multiplexer model,the selection principles of circuit modes are given.展开更多
The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10–20 d B lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings ...The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10–20 d B lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings under certain conditions. However, this problem is not easy to solve because of the lack of analog to digital converter(ADC) chips with more than 24 bits in the market. In this paper, we propose a method in which an adder, an integrator, a digital to analog converter chip, a field-programmable gate array, and an existing low-resolution ADC chip are used to build a third-order 16-bit oversampling delta-sigma modulator. This modulator is equipped with a digital decimation filter, thus facilitating higher resolution and larger dynamic range seismic data acquisition. Experimental results show that, within the 0.1–40 Hz frequency range, the circuit board's dynamic range reaches 158.2 d B, its resolution reaches 25.99 bits, and its linearity error is below 2.5 ppm, which is better than what is achieved by the commercial 24-bit ADC chips ADS1281 and CS5371. This demonstrates that the proposed method may alleviate or even completely resolve the amplitude-limitation problem that so commonly occurs with broadband observation instruments during strong earthquakes.展开更多
文摘A data acquisition system based on LabVIEW and NI PXI-5105 is presented for multi-channel data acquisition. It can realize the functions of parameter setting, data acquisition and storage, waveform display and data analysis using LabVIEW and NI-SCOPE device driver. The advantages of the system are that the setting is convenient, the operation is easy, the interface is friendly and the functions are practical. The experiment results show that the system has good stability and high reliability and is a powerful tool for multi-channel data acquisition.
文摘A data acquisition system (DAS) to implement high-speed, real-time and multi-channel data acquisition and store is presented. The control of the system is implemented by the combination of complex programable logic device (CPLD) and digital signal processing (DSP), the bulk buffer of the system is implemented by the combination of CPLD, DSP, and synchronous dynamic random access memory (SDRAM), and the data transfer is implemented by the combination of DSP, first in first out (FIFO), universal serial bus (USB) and USB hub. The system could not only work independently in single-channel mode, but also implement high-speed real-time multi-channel data acquisition system (MCDAS) by the combination of multiple single-channels. The sampling rate and data storage capacity of each channel could reach up to 100 million sampiing per second and 256 MB respectively.
基金National Natural Science Foundation of China (No.50905169)
文摘This paper describes the detailed desi gn of data acquisition device with multi-channel and high-precision for aerosp ace.Based on detailed analysis of the advantages and disadvantages of tw o common acquisition circuits,the design factors of acquisition device focus o n accuracy,sampling rate,hardware overhead and design space.The me chanical structure of the system is divided into different card layers according to different functions and the structure has the characteristics of high reliability,conveni ence to install and scalability.To ens ure reliable operation mode,the interface uses the optocoupler isolated from th e e xternal circuit.The transmission of signal is decided by the current in the cur rent loop that consists of optocouplers between acquisition device and t est bench.In multi-channel switching circuit,by establ ishing analog multiplexer model,the selection principles of circuit modes are given.
基金supported by the National Natural Science Foundation of China(Grant No.41404142)the National Science and Technology Support Plan Project(Grant No.2012BAF14B12)+1 种基金the Basic Research Projects of Institute of Earthquake Science,CEA(Grant Nos.2014IES0201,2011IES0203&2015IES0406)the Earthquake Monitoring and Prediction Project,CEA(Grant No.16A46ZX262)
文摘The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10–20 d B lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings under certain conditions. However, this problem is not easy to solve because of the lack of analog to digital converter(ADC) chips with more than 24 bits in the market. In this paper, we propose a method in which an adder, an integrator, a digital to analog converter chip, a field-programmable gate array, and an existing low-resolution ADC chip are used to build a third-order 16-bit oversampling delta-sigma modulator. This modulator is equipped with a digital decimation filter, thus facilitating higher resolution and larger dynamic range seismic data acquisition. Experimental results show that, within the 0.1–40 Hz frequency range, the circuit board's dynamic range reaches 158.2 d B, its resolution reaches 25.99 bits, and its linearity error is below 2.5 ppm, which is better than what is achieved by the commercial 24-bit ADC chips ADS1281 and CS5371. This demonstrates that the proposed method may alleviate or even completely resolve the amplitude-limitation problem that so commonly occurs with broadband observation instruments during strong earthquakes.