A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure opt...A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure optimization and crosstalk suppression.A monolithic fabrication process with low damage was explored,which was verified to be compatible well with HgCdTe devices.After monolithic integration of MPA,NETD<9.5 mK was still maintained.Furthermore,to figure out the underlying mechanism that dominat⁃ed the extinction ratio(ER),specialized MPA layouts were designed,and the crosstalk was experimentally vali⁃dated as the major source that impacted ER.By expanding opaque regions at pixel edges to 4μm,crosstalk rates from adjacent pixels could be effectively reduced to approximately 2%,and promising ERs ranging from 17.32 to 27.41 were implemented.展开更多
A major motivation for this work is to investigate a method of computer simulation for compensating fixed pattern noise of the infrared focal plane arrays. A mathematical model of the output signal of focal plane arra...A major motivation for this work is to investigate a method of computer simulation for compensating fixed pattern noise of the infrared focal plane arrays. A mathematical model of the output signal of focal plane array was established; a compensating algorithm utilizing reference source was derived and simulating programs were designed. The images of compensating process verify the influence of nonuniformity of responsibility and offset on fixed pattern noise. The result show that simulating method of investigating compensation technology for focal plane arrays is feasible, the generated images and methods can be used to the study of image recognition.展开更多
In this article, unique spectral features of short-wave infrared band of 1 μm–3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, t...In this article, unique spectral features of short-wave infrared band of 1 μm–3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, the different material systems for the devices in this band are outlined. Based on the background, the development of lattice-matched and wavelengthextended InGaAs photodetectors and focal plane arrays, including our continuous efforts in this field, are reviewed. These devices are concentrated on the applications in spectral sensing and imaging, exclusive of optical fiber communication.展开更多
In this paper we focused on the mask technology of inductively coupled plasma(ICP) etching for the mesa fabrication of infrared focal plane arrays(FPA).By using the SiO_2 mask,the mesa has higher graphics transfer...In this paper we focused on the mask technology of inductively coupled plasma(ICP) etching for the mesa fabrication of infrared focal plane arrays(FPA).By using the SiO_2 mask,the mesa has higher graphics transfer accuracy and creates less micro-ripples in sidewalls.Comparing the IV characterization of detectors by using two different masks,the detector using the SiO_2 hard mask has the R_0A of 9.7×10~6 Ω·cm^2,while the detector using the photoresist mask has the R_0A of3.2 × 10~2 Ω·cm^2 in 77 K.After that we focused on the method of removing the remaining SiO_2 after mesa etching.The dry ICP etching and chemical buffer oxide etcher(BOE) based on HF and NH4 F are used in this part.Detectors using BOE only have closer R_0A to that using the combining method,but it leads to gaps on mesas because of the corrosion on AlSb layer by BOE.We finally choose the combining method and fabricated the 640×512 FPA.The FPA with cutoff wavelength of 4.8 μm has the average R_0A of 6.13 × 10~9 Ω·cm^2 and the average detectivity of 4.51 × 10~9 cm·Hz^(1/2).W^(-1)at 77 K.The FPA has good uniformity with the bad dots rate of 1.21%and the noise equivalent temperature difference(NEDT) of 22.9 mK operating at 77 K.展开更多
A very long wavelength infrared(VLWIR) focal plane array based on In As/Ga Sb type-Ⅱ super-lattices is demonstrated on a Ga Sb substrate. A hetero-structure photodiode was grown with a 50% cut-off wavelength of 15...A very long wavelength infrared(VLWIR) focal plane array based on In As/Ga Sb type-Ⅱ super-lattices is demonstrated on a Ga Sb substrate. A hetero-structure photodiode was grown with a 50% cut-off wavelength of 15.2 μm, at 77 K.A 320×256 VLWIR focal plane array with this design was fabricated and characterized. The peak quantum efficiency without an antireflective coating was 25.74% at the reverse bias voltage of-20 mV, yielding a peak specific detectivity of 5.89×10^10cm·Hz^1/2·W^-1. The operability and the uniformity of response were 89% and 83.17%. The noise-equivalent temperature difference at 65 K exhibited a minimum at 21.4 mK, corresponding to an average value of 56.3 mK.展开更多
Polarimetric imaging enhances the ability to distinguish objects from a bright background by detecting their particular polarization status,which offers another degree of freedom in infrared remote sensing.However,to ...Polarimetric imaging enhances the ability to distinguish objects from a bright background by detecting their particular polarization status,which offers another degree of freedom in infrared remote sensing.However,to scale up by monolithically integrating grating-based polarizers onto a focal plane array(FPA)of infrared detectors,fundamental technical obstacles must be overcome,including reductions of the extinction ratio by the misalignment between the polarizer and the detector,grating line width fluctuations,the line edge roughness,etc.This paper reports the authors’latest achievements in overcoming those problems by solving key technical issues regarding the integration of large-scale polarizers onto the chips of FPAs with individual indium gallium arsenide/indium phosphide(In Ga As/In P)sensors as the basic building blocks.Polarimetric and photovoltaic chips with divisions of the focal plane of 540×4 pixels and 320×256 superpixels have been successfully manufactured.Polarimetric imaging with enhanced contrast has been demonstrated.The progress made in this work has opened up a broad avenue toward industrialization of high quality polarimetric imaging in infrared wavelengths.展开更多
A semi-length focal plane detecting system for heavy ions has been built onthe Beijing Q3D magnetic spectrometer and tested by <sup>12</sup>C+<sup>197</sup>Au,<sup>16</sup>O+<sup...A semi-length focal plane detecting system for heavy ions has been built onthe Beijing Q3D magnetic spectrometer and tested by <sup>12</sup>C+<sup>197</sup>Au,<sup>16</sup>O+<sup>150</sup>Sm,and <sup>18</sup>O-<sup>156</sup>Gd reactions.The intrinsic resolutions of position and angle were 1.1 mmand 0.8°,respectively.The resolutions of energy loss ΔE,residual energy E<sub>R</sub> and totalenergy E<sub>T</sub> obtained were 3.0%,1.4% and 0.9%.respectively,after a special method ofdata processing was adopted.The achievable mass resolution is estimated to be about1.0% after necessary corrections for some signals concerned.Discussion aboul the edgeeffect of the detectors of this type is given too.展开更多
We propose a substrate-free focal plane array (FPA) and the microcantilevers extend from a supporting frame. in this paper. The solid substrate is completely removed, Using finite element analysis, the thermal and m...We propose a substrate-free focal plane array (FPA) and the microcantilevers extend from a supporting frame. in this paper. The solid substrate is completely removed, Using finite element analysis, the thermal and mechanical characterizations of the substrate-free FPA are presented. Because of the large decrease in thermal conductance, the supporting frame is temperature dependent, which brings out a unique feature: the lower the thermal conductance of the supporting frame is, the higher the energy conversion efficiency in the substrate-free FPA will be. The results from the finite element analyses are consistent with our measurements: two types of substrate-free FPAs with pixel sizes of 200×200 and 60×60 um^2 are implemented in the proposed infrared detector. The noise equivalent temperature difference (NETD) values are experimentally measured to be 520 and 300 mK respectively. Further refinements are considered in various aspects, and the substrate-free FPA with a pixel size of 30×30 um^2 has a potential of achieving an NETD value of 10 mK.展开更多
Radiation flux of focal plane plays a very important role of efficiency in a parabolic dish solar system.This paper aims to present the distribution of radiation flux in focal plane for every incident solar irradiatio...Radiation flux of focal plane plays a very important role of efficiency in a parabolic dish solar system.This paper aims to present the distribution of radiation flux in focal plane for every incident solar irradiation.Monte-Carlo ray-tracing method is applied and coupled with the measuring value of incident solar irradiation in Harbin City hourly.The results show that radiation flux in focal plane remains unchanged for different radius from 0 mm to 15 mm,and gradually decreases for different radius from 15 mm to 20 mm.And the results also show that the influence of incident solar irradiation on radiation flux in focal plane is very great,and the highest radiation flux is 21.8 W/mm2,when incident solar irradiation value is 1100 W/m2.展开更多
After briefly introducing the characteristics of 1/f noise in millimeter wave focalplane array detectors, the paper analyses the relation of wavelet transform and 1/f noise in detail, suggests the fashion of decorrela...After briefly introducing the characteristics of 1/f noise in millimeter wave focalplane array detectors, the paper analyses the relation of wavelet transform and 1/f noise in detail, suggests the fashion of decorrelating 1/f noise using the wavelet transform and deduces the relative expressions. The results of computer simulation show good effectiveness.展开更多
This paper describes the scanning assembly principle and construction of scanning assembly sample.The factors that affect assembly accuracy are analyzed.There are two steps in CCD focal plane scanning assembly.The fir...This paper describes the scanning assembly principle and construction of scanning assembly sample.The factors that affect assembly accuracy are analyzed.There are two steps in CCD focal plane scanning assembly.The first is rough assembly,and the second is accurate assembly.In this paper,the moiré fringe is introduced in judging assembly accuracy directly and accurately.The equation for optical transmission characteristics of CCD Moiré fringes is presented.The measurement of Moiré fringes can be completed when some conditions are satisfied.2D_assembly error can be obtained by using digital correlation filtering technique.Finally,the result of focal plane scanning assembly is presented.The result is in good accordance with theory.展开更多
In this paper, a CMOS image sensor(CIS) is proposed, which can accomplish both decorrelation and entropy coding of image compression directly on the focal plane. The design is based on predictive coding for image deco...In this paper, a CMOS image sensor(CIS) is proposed, which can accomplish both decorrelation and entropy coding of image compression directly on the focal plane. The design is based on predictive coding for image decorrelation. The predictions are performed in analog domain by 2×2 pixel units. Both the prediction residuals and original pixel values are quantized and encoded in parallel. Since the residuals have a peak distribution around zero,the output codewords can be replaced by the valid part of the residuals' binary mode. The compressed bit stream is accessible directly at the output of CIS without extra disposition. Simulation results show that the proposed approach achieves a compression rate of 2. 2 and PSNR of 51 on different test images.展开更多
Readout integrated circuit(ROIC) is one of the most important components for hybrid-integrated infrared focal plane array(IRFPA). And it should be tested to ensure the product yield before bonding. This paper presents...Readout integrated circuit(ROIC) is one of the most important components for hybrid-integrated infrared focal plane array(IRFPA). And it should be tested to ensure the product yield before bonding. This paper presents an on-wafer testing system based on Labview for ROIC of IRFPA. The quantitative measurement can be conducted after determining whether there is row crosstalk or not in this system. This low-cost system has the benefits of easy expansion, upgrading, and flexibility, and it has been employed in the testing of several kinds of IRFPA ROICs to measure the parameters of saturated output voltage, non-uniformity, dark noise and dynamic range, etc.展开更多
The energy crisis has aroused widespread concern, and the reform of energy structure is imminent. In the future,the energy structure will be dominated by the solar energy and other renewable energy sources. The solar ...The energy crisis has aroused widespread concern, and the reform of energy structure is imminent. In the future,the energy structure will be dominated by the solar energy and other renewable energy sources. The solar concentrating technology as a promising method has been widely studied for collecting solar energy. However, the previous solar concentrating technologies suffer from some drawbacks, such as low focusing efficiency and large concentrating size. The Luneburg lens with highly efficient aberration-free focusing provides a new route for solar/energy concentrator. In this work, we designed a plane focal surface Luneburg lens(PFSLL) by transformation optics(TO). The PFSLL provides a relatively high focusing efficiency and concentration ratio of collection of energy. At the same time, it circumvents the disadvantage of curve surface of the classical Luneburg lens in device integration. Based on the reciprocity of electromagnetic waves, the PFSLL can also be applied to the antenna field to achieve broadband wide-angle scanning and highly directional radiation.展开更多
The short-wave HgCdTe thin film material was grown by liquid phase epitaxy on CdTe substrate,Adopt n on p injection bonding and function and flip-flop mixing process,With a low noise readout circuit,sealed with a high...The short-wave HgCdTe thin film material was grown by liquid phase epitaxy on CdTe substrate,Adopt n on p injection bonding and function and flip-flop mixing process,With a low noise readout circuit,sealed with a high airtightness cellular-metal shell,Using a four-stage Thermo Electric Cooler(TEC),320×256 Short Wave Infrared Focal Plane Cooling Detecto r available to operate at near room temperature(210K).Its main photoelectric performance are signal-to-noise ratio greater than 400,nonuniformity equivalent to 4.69%,operability equivalent to 99.76%,frame rate equivalent to 115Hz,component weight less than 150grams.展开更多
Room-temperature terahertz (THz) detectors indicate a great potential in the imaging application because of their real-time, compact bulk, and wide spectral band responding characteristics. THz detectors with differ...Room-temperature terahertz (THz) detectors indicate a great potential in the imaging application because of their real-time, compact bulk, and wide spectral band responding characteristics. THz detectors with different dimensions based on a micro-bridge structure have been designed and fabricated to get optimized micro-bolometer parameters from the test results of membrane deformation. A nanostructured titanium (Ti) thin film absorber is integrated in the micro-bridge structure of the VOx micro-bolometer by a combined process of magnetron sputtering and reactive ion etching (RIE), and its improvement of THz absorption is verified by an optical characteristics mesurement. Continuous-wave THz detection and imaging are demonstrated by using a 2.52 THz far infrared CO2 laser and a 320x240 vanadium oxide micro-bolometer focal plane array with an optimized cell structure. With this detecting system, THz imaging of metal concealed in a wiping cloth and an envelope is demonstrated, respectively.展开更多
Aiming to solve the problem that it is difficult to accurately measure UV cut-off transmittance of xenon quartz glass by using present spectrophotometer in China SG III project. Through the analysis, we believe that i...Aiming to solve the problem that it is difficult to accurately measure UV cut-off transmittance of xenon quartz glass by using present spectrophotometer in China SG III project. Through the analysis, we believe that its reason was that the xenon quartz glass was nonplanar so the outgoing beam geometry from under-test was different from that from standard sample. A method of transmittance measurement based on focal-plane-array camera was proposed in this article. The effects of camera uniformity and spot sampling on transmittance measurement were analyzed theoretically. This method, which can reduce the effect of beam geometry on transmittance measurement and eliminate the cutting error occurring during light transmission by monitoring the completeness of incident beam in real-time, is verified from experiments. The random standard uncertainty of this method here is 0.035% or less. It is particularly useful in the transmittance measurement of nonplanar optical.展开更多
Medium-wave HgCdTe thin films grown on germanium-based substrates by molecular beam epitaxy were treated by large area n-on-p injection junction and flip-flop mixing process.The chips interconnected with low-noise and...Medium-wave HgCdTe thin films grown on germanium-based substrates by molecular beam epitaxy were treated by large area n-on-p injection junction and flip-flop mixing process.The chips interconnected with low-noise and multimodal options readout circuit composed a 1280×1024 Medium-wave Infrared Focal Plane Cooling Detector whose pixel spacing was 15 microns.Its main photoelectric properties are average NETD equivalent to 18.5 mK,non-uniformity equivalent to 7.5%,operability equivalent to 98.97%.The paper also studies the substrate-removal technique on Germanium-based chip,which improves the stability and reliability of detector.展开更多
The great Tancheng earthquake of M81/2 occurred in 1668 was the largest seismic event ever recorded in history in eastern China. This study determines the fault geometry of this earthquake by inverting seismological ...The great Tancheng earthquake of M81/2 occurred in 1668 was the largest seismic event ever recorded in history in eastern China. This study determines the fault geometry of this earthquake by inverting seismological data of present-day moderate-small earthquakes in the focal area. We relocated those earthquakes with the double-difference method and found focal mechanism solutions using gird test method. The inversion results are as follows: the strike is 21.6°, the dip angle is 89.5°, the slip angle is 170°, the fault length is about 160 km, the lower-boundary depth is about 32 km and the buried depth of upper boundary is about 4 km. This shows that the seismic fault is a NNE-trending upright right-lateral strike-slip fault and has cut through the crust. Moreover, the surface seismic fault, intensity distribution of the earthquake, earthquake-depth distribution and seismic-wave velocity profile in the focal area all verified our study result.展开更多
As is well known, Greece has a significant number of earthquakes each year. Ιn recent years, several earthquakes have occurred in Greece. For this scope, a methodology was used to determine the source parameters. Thi...As is well known, Greece has a significant number of earthquakes each year. Ιn recent years, several earthquakes have occurred in Greece. For this scope, a methodology was used to determine the source parameters. This methodology is based on minimizing the difference between the observed and the synthetic waveforms, using the method Source Parameters Calculation—SPCa <a href="#ref1" target="_blank">[1]</a>. The source parameters, using the proposed methodology, are calculated by comparing observed seismograms and synthetic by inverting data. The synthetics are calculated using the reflectivity method (Kennett, 1983) as implemented by Randall et al. (1994) for a given earth structure. This study includes inversion results for the strongest events that occurred in Greece from 2008 to 2014. For the same events calculated the main fault plane, using the method of Hypocenter Centroid-plot (HC-plot) <a href="#ref2" target="_blank">[2]</a> <a href="#ref3" target="_blank">[3]</a>. This methodology is a simple geometrical method based on the combination between the hypocentral position and the two possible fault planes.展开更多
基金Supported by the self-funded project of Kunming Institute of Physics。
文摘A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure optimization and crosstalk suppression.A monolithic fabrication process with low damage was explored,which was verified to be compatible well with HgCdTe devices.After monolithic integration of MPA,NETD<9.5 mK was still maintained.Furthermore,to figure out the underlying mechanism that dominat⁃ed the extinction ratio(ER),specialized MPA layouts were designed,and the crosstalk was experimentally vali⁃dated as the major source that impacted ER.By expanding opaque regions at pixel edges to 4μm,crosstalk rates from adjacent pixels could be effectively reduced to approximately 2%,and promising ERs ranging from 17.32 to 27.41 were implemented.
文摘A major motivation for this work is to investigate a method of computer simulation for compensating fixed pattern noise of the infrared focal plane arrays. A mathematical model of the output signal of focal plane array was established; a compensating algorithm utilizing reference source was derived and simulating programs were designed. The images of compensating process verify the influence of nonuniformity of responsibility and offset on fixed pattern noise. The result show that simulating method of investigating compensation technology for focal plane arrays is feasible, the generated images and methods can be used to the study of image recognition.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402400)the National Natural Science Foundation of China(Grant Nos.61675225,61605232,and 61775228)the Shanghai Rising-Star Program,China(Grant No.17QA1404900)
文摘In this article, unique spectral features of short-wave infrared band of 1 μm–3 μm, and various applications related to the photodetectors and focal plane arrays in this band, are introduced briefly. In addition, the different material systems for the devices in this band are outlined. Based on the background, the development of lattice-matched and wavelengthextended InGaAs photodetectors and focal plane arrays, including our continuous efforts in this field, are reviewed. These devices are concentrated on the applications in spectral sensing and imaging, exclusive of optical fiber communication.
基金Project supported by the National Basic Research Program of China(Grant Nos.2014CB643903,2013CB932904,2012CB932701,and 2011CB922201)the National Special Funds for the Development of Major Research Equipment and Instruments,China(Grant No.2012YQ140005)+2 种基金the National Natural Science Foundation of China(Grant Nos.61274013,U1037602,61306013,and 61290303)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB01010200)China Postdoctoral Science Foundation(Grant No.2014M561029)
文摘In this paper we focused on the mask technology of inductively coupled plasma(ICP) etching for the mesa fabrication of infrared focal plane arrays(FPA).By using the SiO_2 mask,the mesa has higher graphics transfer accuracy and creates less micro-ripples in sidewalls.Comparing the IV characterization of detectors by using two different masks,the detector using the SiO_2 hard mask has the R_0A of 9.7×10~6 Ω·cm^2,while the detector using the photoresist mask has the R_0A of3.2 × 10~2 Ω·cm^2 in 77 K.After that we focused on the method of removing the remaining SiO_2 after mesa etching.The dry ICP etching and chemical buffer oxide etcher(BOE) based on HF and NH4 F are used in this part.Detectors using BOE only have closer R_0A to that using the combining method,but it leads to gaps on mesas because of the corrosion on AlSb layer by BOE.We finally choose the combining method and fabricated the 640×512 FPA.The FPA with cutoff wavelength of 4.8 μm has the average R_0A of 6.13 × 10~9 Ω·cm^2 and the average detectivity of 4.51 × 10~9 cm·Hz^(1/2).W^(-1)at 77 K.The FPA has good uniformity with the bad dots rate of 1.21%and the noise equivalent temperature difference(NEDT) of 22.9 mK operating at 77 K.
基金supported by the National Basic Research Program of China(Grant Nos.2013CB932904 and 2011CB922201)the National Special Funds for the Development of Major Research Equipment and Instruments,China(Grant No.2012YQ140005)the National Natural Science Foundation of China(Grant Nos.61274013,61290303,and 61306013)
文摘A very long wavelength infrared(VLWIR) focal plane array based on In As/Ga Sb type-Ⅱ super-lattices is demonstrated on a Ga Sb substrate. A hetero-structure photodiode was grown with a 50% cut-off wavelength of 15.2 μm, at 77 K.A 320×256 VLWIR focal plane array with this design was fabricated and characterized. The peak quantum efficiency without an antireflective coating was 25.74% at the reverse bias voltage of-20 mV, yielding a peak specific detectivity of 5.89×10^10cm·Hz^1/2·W^-1. The operability and the uniformity of response were 89% and 83.17%. The noise-equivalent temperature difference at 65 K exhibited a minimum at 21.4 mK, corresponding to an average value of 56.3 mK.
基金financially supported by the following projects:Open project of SITP(Project Number:IIMDKFJJ-18-09)National Natural Science Foundation of China(Project Number:61927820)+2 种基金The STCSM2019-11-20 funding(Project Number:19142202700)National Natural Science Foundation of China(Project Number:NSF No.U1732104)Zhejiang Lab’s International Talent Fund for Young Professionals。
文摘Polarimetric imaging enhances the ability to distinguish objects from a bright background by detecting their particular polarization status,which offers another degree of freedom in infrared remote sensing.However,to scale up by monolithically integrating grating-based polarizers onto a focal plane array(FPA)of infrared detectors,fundamental technical obstacles must be overcome,including reductions of the extinction ratio by the misalignment between the polarizer and the detector,grating line width fluctuations,the line edge roughness,etc.This paper reports the authors’latest achievements in overcoming those problems by solving key technical issues regarding the integration of large-scale polarizers onto the chips of FPAs with individual indium gallium arsenide/indium phosphide(In Ga As/In P)sensors as the basic building blocks.Polarimetric and photovoltaic chips with divisions of the focal plane of 540×4 pixels and 320×256 superpixels have been successfully manufactured.Polarimetric imaging with enhanced contrast has been demonstrated.The progress made in this work has opened up a broad avenue toward industrialization of high quality polarimetric imaging in infrared wavelengths.
文摘A semi-length focal plane detecting system for heavy ions has been built onthe Beijing Q3D magnetic spectrometer and tested by <sup>12</sup>C+<sup>197</sup>Au,<sup>16</sup>O+<sup>150</sup>Sm,and <sup>18</sup>O-<sup>156</sup>Gd reactions.The intrinsic resolutions of position and angle were 1.1 mmand 0.8°,respectively.The resolutions of energy loss ΔE,residual energy E<sub>R</sub> and totalenergy E<sub>T</sub> obtained were 3.0%,1.4% and 0.9%.respectively,after a special method ofdata processing was adopted.The achievable mass resolution is estimated to be about1.0% after necessary corrections for some signals concerned.Discussion aboul the edgeeffect of the detectors of this type is given too.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10732080 and 10627201)the National Basic Research Program of China (Grant No. 2006CB300404)
文摘We propose a substrate-free focal plane array (FPA) and the microcantilevers extend from a supporting frame. in this paper. The solid substrate is completely removed, Using finite element analysis, the thermal and mechanical characterizations of the substrate-free FPA are presented. Because of the large decrease in thermal conductance, the supporting frame is temperature dependent, which brings out a unique feature: the lower the thermal conductance of the supporting frame is, the higher the energy conversion efficiency in the substrate-free FPA will be. The results from the finite element analyses are consistent with our measurements: two types of substrate-free FPAs with pixel sizes of 200×200 and 60×60 um^2 are implemented in the proposed infrared detector. The noise equivalent temperature difference (NETD) values are experimentally measured to be 520 and 300 mK respectively. Further refinements are considered in various aspects, and the substrate-free FPA with a pixel size of 30×30 um^2 has a potential of achieving an NETD value of 10 mK.
基金Sponsored by the China National Key Basic Research Special Funds (Grant No. 2009CB220006)the National Natural Science Foundation of China(Grant No.50930007)
文摘Radiation flux of focal plane plays a very important role of efficiency in a parabolic dish solar system.This paper aims to present the distribution of radiation flux in focal plane for every incident solar irradiation.Monte-Carlo ray-tracing method is applied and coupled with the measuring value of incident solar irradiation in Harbin City hourly.The results show that radiation flux in focal plane remains unchanged for different radius from 0 mm to 15 mm,and gradually decreases for different radius from 15 mm to 20 mm.And the results also show that the influence of incident solar irradiation on radiation flux in focal plane is very great,and the highest radiation flux is 21.8 W/mm2,when incident solar irradiation value is 1100 W/m2.
文摘After briefly introducing the characteristics of 1/f noise in millimeter wave focalplane array detectors, the paper analyses the relation of wavelet transform and 1/f noise in detail, suggests the fashion of decorrelating 1/f noise using the wavelet transform and deduces the relative expressions. The results of computer simulation show good effectiveness.
文摘This paper describes the scanning assembly principle and construction of scanning assembly sample.The factors that affect assembly accuracy are analyzed.There are two steps in CCD focal plane scanning assembly.The first is rough assembly,and the second is accurate assembly.In this paper,the moiré fringe is introduced in judging assembly accuracy directly and accurately.The equation for optical transmission characteristics of CCD Moiré fringes is presented.The measurement of Moiré fringes can be completed when some conditions are satisfied.2D_assembly error can be obtained by using digital correlation filtering technique.Finally,the result of focal plane scanning assembly is presented.The result is in good accordance with theory.
基金Supported by the National Natural Science Foundation of China(No.61036004)Tianjin Research Program of Application Foundation and Advanced Technology(No.13JCQNJC00600)
文摘In this paper, a CMOS image sensor(CIS) is proposed, which can accomplish both decorrelation and entropy coding of image compression directly on the focal plane. The design is based on predictive coding for image decorrelation. The predictions are performed in analog domain by 2×2 pixel units. Both the prediction residuals and original pixel values are quantized and encoded in parallel. Since the residuals have a peak distribution around zero,the output codewords can be replaced by the valid part of the residuals' binary mode. The compressed bit stream is accessible directly at the output of CIS without extra disposition. Simulation results show that the proposed approach achieves a compression rate of 2. 2 and PSNR of 51 on different test images.
文摘Readout integrated circuit(ROIC) is one of the most important components for hybrid-integrated infrared focal plane array(IRFPA). And it should be tested to ensure the product yield before bonding. This paper presents an on-wafer testing system based on Labview for ROIC of IRFPA. The quantitative measurement can be conducted after determining whether there is row crosstalk or not in this system. This low-cost system has the benefits of easy expansion, upgrading, and flexibility, and it has been employed in the testing of several kinds of IRFPA ROICs to measure the parameters of saturated output voltage, non-uniformity, dark noise and dynamic range, etc.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0710100)the National Natural Science Foundation of China (Grant Nos. 92050102 and 11874311)+1 种基金the Shenzhen Science and Technology Program (Grant No. JCYJ20210324121610028)the Fundamental Research Funds for the Central Universities (Grant Nos. 20720220033 and 20720200074)。
文摘The energy crisis has aroused widespread concern, and the reform of energy structure is imminent. In the future,the energy structure will be dominated by the solar energy and other renewable energy sources. The solar concentrating technology as a promising method has been widely studied for collecting solar energy. However, the previous solar concentrating technologies suffer from some drawbacks, such as low focusing efficiency and large concentrating size. The Luneburg lens with highly efficient aberration-free focusing provides a new route for solar/energy concentrator. In this work, we designed a plane focal surface Luneburg lens(PFSLL) by transformation optics(TO). The PFSLL provides a relatively high focusing efficiency and concentration ratio of collection of energy. At the same time, it circumvents the disadvantage of curve surface of the classical Luneburg lens in device integration. Based on the reciprocity of electromagnetic waves, the PFSLL can also be applied to the antenna field to achieve broadband wide-angle scanning and highly directional radiation.
文摘The short-wave HgCdTe thin film material was grown by liquid phase epitaxy on CdTe substrate,Adopt n on p injection bonding and function and flip-flop mixing process,With a low noise readout circuit,sealed with a high airtightness cellular-metal shell,Using a four-stage Thermo Electric Cooler(TEC),320×256 Short Wave Infrared Focal Plane Cooling Detecto r available to operate at near room temperature(210K).Its main photoelectric performance are signal-to-noise ratio greater than 400,nonuniformity equivalent to 4.69%,operability equivalent to 99.76%,frame rate equivalent to 115Hz,component weight less than 150grams.
基金supported by the National Science Funds for Creative Research Groups of China under Grant No.61421002National High Technology Research and Development Program under Grant No.2015AA8123014
文摘Room-temperature terahertz (THz) detectors indicate a great potential in the imaging application because of their real-time, compact bulk, and wide spectral band responding characteristics. THz detectors with different dimensions based on a micro-bridge structure have been designed and fabricated to get optimized micro-bolometer parameters from the test results of membrane deformation. A nanostructured titanium (Ti) thin film absorber is integrated in the micro-bridge structure of the VOx micro-bolometer by a combined process of magnetron sputtering and reactive ion etching (RIE), and its improvement of THz absorption is verified by an optical characteristics mesurement. Continuous-wave THz detection and imaging are demonstrated by using a 2.52 THz far infrared CO2 laser and a 320x240 vanadium oxide micro-bolometer focal plane array with an optimized cell structure. With this detecting system, THz imaging of metal concealed in a wiping cloth and an envelope is demonstrated, respectively.
文摘Aiming to solve the problem that it is difficult to accurately measure UV cut-off transmittance of xenon quartz glass by using present spectrophotometer in China SG III project. Through the analysis, we believe that its reason was that the xenon quartz glass was nonplanar so the outgoing beam geometry from under-test was different from that from standard sample. A method of transmittance measurement based on focal-plane-array camera was proposed in this article. The effects of camera uniformity and spot sampling on transmittance measurement were analyzed theoretically. This method, which can reduce the effect of beam geometry on transmittance measurement and eliminate the cutting error occurring during light transmission by monitoring the completeness of incident beam in real-time, is verified from experiments. The random standard uncertainty of this method here is 0.035% or less. It is particularly useful in the transmittance measurement of nonplanar optical.
文摘Medium-wave HgCdTe thin films grown on germanium-based substrates by molecular beam epitaxy were treated by large area n-on-p injection junction and flip-flop mixing process.The chips interconnected with low-noise and multimodal options readout circuit composed a 1280×1024 Medium-wave Infrared Focal Plane Cooling Detector whose pixel spacing was 15 microns.Its main photoelectric properties are average NETD equivalent to 18.5 mK,non-uniformity equivalent to 7.5%,operability equivalent to 98.97%.The paper also studies the substrate-removal technique on Germanium-based chip,which improves the stability and reliability of detector.
基金supported by the National Natural Science Foundation of China(No.90814002)the Natural Science Foundation of Shandong Province(No.Y2005E02)
文摘The great Tancheng earthquake of M81/2 occurred in 1668 was the largest seismic event ever recorded in history in eastern China. This study determines the fault geometry of this earthquake by inverting seismological data of present-day moderate-small earthquakes in the focal area. We relocated those earthquakes with the double-difference method and found focal mechanism solutions using gird test method. The inversion results are as follows: the strike is 21.6°, the dip angle is 89.5°, the slip angle is 170°, the fault length is about 160 km, the lower-boundary depth is about 32 km and the buried depth of upper boundary is about 4 km. This shows that the seismic fault is a NNE-trending upright right-lateral strike-slip fault and has cut through the crust. Moreover, the surface seismic fault, intensity distribution of the earthquake, earthquake-depth distribution and seismic-wave velocity profile in the focal area all verified our study result.
文摘As is well known, Greece has a significant number of earthquakes each year. Ιn recent years, several earthquakes have occurred in Greece. For this scope, a methodology was used to determine the source parameters. This methodology is based on minimizing the difference between the observed and the synthetic waveforms, using the method Source Parameters Calculation—SPCa <a href="#ref1" target="_blank">[1]</a>. The source parameters, using the proposed methodology, are calculated by comparing observed seismograms and synthetic by inverting data. The synthetics are calculated using the reflectivity method (Kennett, 1983) as implemented by Randall et al. (1994) for a given earth structure. This study includes inversion results for the strongest events that occurred in Greece from 2008 to 2014. For the same events calculated the main fault plane, using the method of Hypocenter Centroid-plot (HC-plot) <a href="#ref2" target="_blank">[2]</a> <a href="#ref3" target="_blank">[3]</a>. This methodology is a simple geometrical method based on the combination between the hypocentral position and the two possible fault planes.