Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung H...Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung Hwan Ko and Taek-Soo Kim’s team introduced a laserinduced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates.The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm^(−1)with a spatial resolution down to 5μm.Moreover,they maintain impedance and charge-storage capacity even after 1 h of sonication.The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings,highlighting their promising role in the field of bioelectronics.展开更多
A high precision laser trigger system is built up in the single test module of Primary Test Stand (PTS) facility. A fourth harmonic, with a wavelength A of 266 nm, Q-switched Nd:YAG laser was used to trigger the 5 ...A high precision laser trigger system is built up in the single test module of Primary Test Stand (PTS) facility. A fourth harmonic, with a wavelength A of 266 nm, Q-switched Nd:YAG laser was used to trigger the 5 MV multi-gap multi-channel gas switch which was filled with high pressure SF6-N2 mixture gas. The maximum deviation and the standard deviation in the jitter time of the trigger system is 4- 0.7 ns and 0.3 ns respectively. The maximum deviation and the standard deviation in the jitter time for the multi-gap multi-channel laser triggering switch is 4- 2.4 ns and 1.5 ns respectively. The curve of switch delay-time versus laser energy is obtained, which is helpful for the choice of fitting laser energy. The successful test with two lasers indicated that the design of using twenty-four lasers to trigger twenty-four switches respectively is feasible in "PTS".展开更多
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi...Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing...Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices.展开更多
The use of broadband laser technology is a novel approach for inhibiting processes related to laser plasma interactions(LPIs).In this study,several preliminary experiments into broadband-laser-driven LPIs are carried ...The use of broadband laser technology is a novel approach for inhibiting processes related to laser plasma interactions(LPIs).In this study,several preliminary experiments into broadband-laser-driven LPIs are carried out using a newly established hundreds-of-joules broadband second-harmonic-generation laser facility.Through direct comparison with LPI results for a traditional narrowband laser,the actual LPI-suppression effect of the broadband laser is shown.The broadband laser had a clear suppressive effect on both back-stimulated Raman scattering and back-stimulated Brillouin scattering at laser intensities below 1×10^(15) W cm^(−2).An abnormal hot-electron phenomenon is also investigated,using targets of different thicknesses.展开更多
AIM:To compare the short-term effectiveness of intelligent navigated laser photocoagulation and 577-nm subthreshold micropulse laser(SML)treatment in patients with chronic central serous chorioretinopathy(cCSC).METHOD...AIM:To compare the short-term effectiveness of intelligent navigated laser photocoagulation and 577-nm subthreshold micropulse laser(SML)treatment in patients with chronic central serous chorioretinopathy(cCSC).METHODS:This observational retrospective cohort study included 60 consecutive patients who underwent intelligent navigated laser photocoagulation(n=30)or 577-nm SML treatment(n=30)for cCSC between Jan.2021 and Oct.2022.During 3mo follow-up,all patients underwent assessments of best correct visual acuity(BCVA)and optical coherence tomography(OCT).RESULTS:The operation of laser treatment was successful in all cases.At 1mo,BCVA improved significantly more in the intelligent navigated laser photocoagulation group compared to the SML group(P<0.05).The change was not significantly different at 3mo(P>0.05).Central macular thickness(CMT)in the intelligent navigated laser photocoagulation group was lower than in the SML group at 1mo(P<0.05).The subfoveal choroidal thickness(SFCT)in two groups were all significantly improved at 3mo(all P<0.05).The change between two groups was not significantly different at 1mo or at 3mo(P>0.05).CONCLUSION:Intelligent navigated laser photocoagulation is superior to SML for treating cCSC,leading to better improvements in vision and CMT for short term.展开更多
A multichannel methanoic acid (HCOOH, λ=432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ=337 μm) laser interferometer in the HL-2A tokamak....A multichannel methanoic acid (HCOOH, λ=432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ=337 μm) laser interferometer in the HL-2A tokamak. A conventional Michelson-type interometer is used for the electron density measurement, and a Dodel-Kunz-type polarimeter is used for the Faraday rotation effect measurement, respectively. Each HCOOH laser can produce a linearly polarized radiation at a power lever of -30 mW, and a power stability 〈10% in 50 rain. A beam waist (diameter d0 ≈12.0 mm, about 200 mm away from the outlet) is finally determined through a chopping modulation technique. The latest optical layout of the interferometer/polarimeter has been finished, and the hardware data processing system based on the fast Fourier transform phase- comparator technique is being explored. In order to demonstrate the feasibility of the diagnostic scheme, two associated bench simulation experiments were carried out in the laboratory, in which the plasma was simulated by a piece of polytetrafluoroethene plate, and the Faraday rotation effect was simulated by a rotating half-wave plate. Simulation results agreed well with the initial experimental conditions. At present, the HCOOH laser interferometer/polarimeter system is being assembled on HL-2A, and is planned to be applied in the 2014-2015 experimental campaign.展开更多
Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The ...Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.展开更多
Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturin...Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.展开更多
The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional dr...The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional droplet manipulation on Nepenthes-inspired lubricated slippery surfaces via triboelectric electrostatic tweezers(TETs).The TET manipulation of droplets on a slippery surface has many advantages over electrostatic droplet manipulation on a superhydrophobic surface.The electrostatic field induces the redistribution of the charges inside the neutral droplet,which causes the triboelectric charged rod to drive the droplet to move forward under the electrostatic force.Positively or negatively charged droplets can also be driven by TET based on electrostatic attraction and repulsion.TET enables us to manipulate droplets under diverse conditions,including anti-gravity climb,suspended droplets,corrosive liquids,low-surface-tension liquids(e.g.ethanol with a surface tension of 22.3 mN·m^(-1)),different droplet volumes(from 100 nl to 0.5 ml),passing through narrow slits,sliding over damaged areas,on various solid substrates,and even droplets in an enclosed system.Various droplet-related applications,such as motion guidance,motion switching,droplet-based microreactions,surface cleaning,surface defogging,liquid sorting,and cell labeling,can be easily achieved with TETs.展开更多
Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue pen...Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue penetration of the laser is still a challenge for the in vivo diagnosis of deep-seated lesions.Nanomaterials have been universally integrated with spectroscopic imaging techniques for deeper cancer diagnosis in vivo.The components,morphology,and sizes of nanomaterials are delicately designed,which could realize cancer diagnosis in vivo or in situ.Considering the enhanced signal emitting from the nanomaterials,we emphasized their combination with spectroscopic imaging techniques for cancer diagnosis,like the surface-enhanced Raman scattering(SERS),photoacoustic,fluorescence,and laser-induced breakdown spectroscopy(LIBS).Applications ofthe above spectroscopic techniques offer new prospectsfor cancer diagnosis.展开更多
Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conducto...Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conductor inside soft actuators can reduce the rigidity and enhance the actuation performance and robustness.Despite research efforts,challenges persist in the flexible fabrication of LM soft actuators and in the improvement of actuation performance.To address these challenges,we developed a fast and robust electromagnetic soft microplate actuator based on a laser-induced selective adhesion transfer method.Equipped with unprecedentedly thin LM circuit and customized low Young’s modulus silicone rubber(1.03 kPa),our actuator exhibits an excellent deformation angle(265.25?)and actuation bending angular velocity(284.66 rad·s^(-1)).Furthermore,multiple actuators have been combined to build an artificial gripper with a wide range of functionalities.Our actuator presents new possibilities for designing small-scaleartificial machines and supports advancements in ultrafast soft and miniaturized robotics.展开更多
Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a...Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a processebased physical modeling of a pileereinforced reservoir landslide and present an improved deformation analysis involving large strains and water effects.We collect multieperiod point clouds using a terrain laser scanner and reconstruct its deformation field through a point cloud processing workflow.The results show that this method can accurately describe the landslide surface deformation at any time and area by both scalar and vector fields.The deformation fields in different profiles of the physical model and different stages of the evolutionary process provide adequate and detailed landslide information.We analyze the large strain upstream of the pile caused by the pile installation and the consequent violent deformation during the evolutionary process.Furthermore,our method effectively overcomes the challenges of identifying targets commonly encountered in geotechnical modeling where water effects are considered and targets are polluted,which facilitates the deformation analysis at the wading area in a reservoir landslide.Eventually,combining subsurface deformation as well as numerical modeling,we comprehensively analyze the kinematics and failure mechanisms of this complicated object involving landslides and pile foundations as well as water effects.This method is of great significance for any geotechnical modeling concerning large-strain analysis and water effects.展开更多
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not...Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.展开更多
BACKGROUND In recent years,confocal laser endomicroscopy(CLE)has become a new endoscopic imaging technology at the microscopic level,which is extensively performed for real-time in vivo histological examination.CLE ca...BACKGROUND In recent years,confocal laser endomicroscopy(CLE)has become a new endoscopic imaging technology at the microscopic level,which is extensively performed for real-time in vivo histological examination.CLE can be performed to distinguish benign from malignant lesions.In this study,we diagnosed using CLE an asymptomatic patient with poorly differentiated gastric adenocarcinoma.CASE SUMMARY A 63-year-old woman was diagnosed with gastric mucosal lesions,which may be gastric cancer,in the small curvature of the stomach by gastroscopy.She consented to undergo CLE for morphological observation of the gastric mucosa.Through the combination of CLE diagnosis and postoperative pathology,the intraoperative CLE diagnosis was considered to be reliable.According to our experience,CLE can be performed as the first choice for the diagnosis of gastric cancer.CONCLUSION CLE has several advantages over pathological diagnosis.We believe that CLE has great potential in the diagnosis of benign and malignant gastric lesions.展开更多
The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy ...The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy samples were analyzed.It is found that the rapidly solidified alloy has undergone twice grain refinement during the undercooling process.Characterization and significance of the maximum undercooling refinement structure of Cu60Ni35Co5 at T=253 K were analyzed.High-density defects were observed,such as dislocations,stacking faults networks,and twinning structures.The standard FCC diffraction pattern represents that it is still a single-phase structure.Based on the metallographic diagram,EBSD and TEM data analysis,it is illustrated that the occurrence of grain refinement under high undercooling is due to stress induced recrystallization.In addition,the laser cladding technology is used to coat Co-based alloy(Stellite12) coating on 304 stainless steel substrate;the microstructure of the coating cross-section was analyzed.It was found that the microstructure of the cross-section is presented as columnar crystals,planar crystals,and disordered growth direction,so that the coating has better hardness and wear resistance.By electrochemical corrosion of the substrate and coating,it can be seen that the Co and Cr elements present in the coating are more likely to form a dense passivation film,which improved the corrosion resistance of the coating.展开更多
We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge l...We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.展开更多
Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,it...Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,its vibration and noise reduction,and damping properties have not been fully studied.Therefore,in this study,the TPMS structures with parameterization were designed by the method of surface migration,and the TPMS structures with high forming quality was manufactured by laser powder bed fusion(LPBF).The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression.The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis,and the damping properties of two structures were obtained by modal tests.For the two structures after heat treatment with the same porosity of 70%,the yield strength of the beam lattice structure reaches 40.76 MPa,elastic modulus is 20.38 GPa,the energy absorption value is 32.23 MJ·m^(-3),the damping ratio is 0.52%.The yield strength,elastic modulus,energy absorption value,and damping ratio of the TPMS structure are 50.74 MPa,25.37 GPa,47.34 MJ·m^(-3),and 0.99%,respectively.The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption,better damping performance,and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity.展开更多
Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to d...Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.展开更多
基金supported by the National Natural Science Foundation of China(52475610)Zhejiang Provincial Natural Science Foundation of China(LDQ24E050001).
文摘Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung Hwan Ko and Taek-Soo Kim’s team introduced a laserinduced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates.The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm^(−1)with a spatial resolution down to 5μm.Moreover,they maintain impedance and charge-storage capacity even after 1 h of sonication.The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings,highlighting their promising role in the field of bioelectronics.
基金supported by National Natural Science Foundation of China (No.10574096)the Research Fund for the Doctoral Program of Higher Education of China (No.20050610010)
文摘A high precision laser trigger system is built up in the single test module of Primary Test Stand (PTS) facility. A fourth harmonic, with a wavelength A of 266 nm, Q-switched Nd:YAG laser was used to trigger the 5 MV multi-gap multi-channel gas switch which was filled with high pressure SF6-N2 mixture gas. The maximum deviation and the standard deviation in the jitter time of the trigger system is 4- 0.7 ns and 0.3 ns respectively. The maximum deviation and the standard deviation in the jitter time for the multi-gap multi-channel laser triggering switch is 4- 2.4 ns and 1.5 ns respectively. The curve of switch delay-time versus laser energy is obtained, which is helpful for the choice of fitting laser energy. The successful test with two lasers indicated that the design of using twenty-four lasers to trigger twenty-four switches respectively is feasible in "PTS".
基金financially supported by the National Key Research and Development Program of China(2022YFB4600302)National Natural Science Foundation of China(52090041)+1 种基金National Natural Science Foundation of China(52104368)National Major Science and Technology Projects of China(J2019-VII-0010-0150)。
文摘Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Ministry of Science and ICT(MSIT)(RS-2023-00251283,and 2022M3D1A2083618)by the Ministry of Education(2020R1A6A1A03040516).
文摘Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices.
基金supported by the National Science Foundation of China under Award Nos.12074353 and 12075227.
文摘The use of broadband laser technology is a novel approach for inhibiting processes related to laser plasma interactions(LPIs).In this study,several preliminary experiments into broadband-laser-driven LPIs are carried out using a newly established hundreds-of-joules broadband second-harmonic-generation laser facility.Through direct comparison with LPI results for a traditional narrowband laser,the actual LPI-suppression effect of the broadband laser is shown.The broadband laser had a clear suppressive effect on both back-stimulated Raman scattering and back-stimulated Brillouin scattering at laser intensities below 1×10^(15) W cm^(−2).An abnormal hot-electron phenomenon is also investigated,using targets of different thicknesses.
文摘AIM:To compare the short-term effectiveness of intelligent navigated laser photocoagulation and 577-nm subthreshold micropulse laser(SML)treatment in patients with chronic central serous chorioretinopathy(cCSC).METHODS:This observational retrospective cohort study included 60 consecutive patients who underwent intelligent navigated laser photocoagulation(n=30)or 577-nm SML treatment(n=30)for cCSC between Jan.2021 and Oct.2022.During 3mo follow-up,all patients underwent assessments of best correct visual acuity(BCVA)and optical coherence tomography(OCT).RESULTS:The operation of laser treatment was successful in all cases.At 1mo,BCVA improved significantly more in the intelligent navigated laser photocoagulation group compared to the SML group(P<0.05).The change was not significantly different at 3mo(P>0.05).Central macular thickness(CMT)in the intelligent navigated laser photocoagulation group was lower than in the SML group at 1mo(P<0.05).The subfoveal choroidal thickness(SFCT)in two groups were all significantly improved at 3mo(all P<0.05).The change between two groups was not significantly different at 1mo or at 3mo(P>0.05).CONCLUSION:Intelligent navigated laser photocoagulation is superior to SML for treating cCSC,leading to better improvements in vision and CMT for short term.
基金supported by the National Magnetic Confinement Fusion Science Programs of China(Nos.2010GB101002 and 2014GB109001)National Natural Science Foundation of China(Nos.11075048 and 11275059)
文摘A multichannel methanoic acid (HCOOH, λ=432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ=337 μm) laser interferometer in the HL-2A tokamak. A conventional Michelson-type interometer is used for the electron density measurement, and a Dodel-Kunz-type polarimeter is used for the Faraday rotation effect measurement, respectively. Each HCOOH laser can produce a linearly polarized radiation at a power lever of -30 mW, and a power stability 〈10% in 50 rain. A beam waist (diameter d0 ≈12.0 mm, about 200 mm away from the outlet) is finally determined through a chopping modulation technique. The latest optical layout of the interferometer/polarimeter has been finished, and the hardware data processing system based on the fast Fourier transform phase- comparator technique is being explored. In order to demonstrate the feasibility of the diagnostic scheme, two associated bench simulation experiments were carried out in the laboratory, in which the plasma was simulated by a piece of polytetrafluoroethene plate, and the Faraday rotation effect was simulated by a rotating half-wave plate. Simulation results agreed well with the initial experimental conditions. At present, the HCOOH laser interferometer/polarimeter system is being assembled on HL-2A, and is planned to be applied in the 2014-2015 experimental campaign.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. AE89991/403)National Natural Science Foundation of China (Grant No. 52005262)+1 种基金Natural Science Foundation of Jiangsu Province (BK20202007)National Key Research and Development Program of China (2022YFB4600800)。
文摘Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.
基金National Natural Science Foundation of China (52305358)the Fundamental Research Funds for the Central Universities (2023ZYGXZR061)+3 种基金Guangdong Basic and Applied Basic Research Foundation (2022A1515010304)Science and Technology Program of Guangzhou (202201010362)Young Elite Scientists Sponsorship Program by CAST . (2023QNRC001)Young Talent Support Project of Guangzhou (QT-2023-001)
文摘Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.
基金supported by the USTC Research Funds of the Double First-Class Initiative(Nos.YD2090002013,YD234000009)the National Natural Science Foundation of China(Nos.61927814,62325507,52122511,U20A20290,62005262)。
文摘The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional droplet manipulation on Nepenthes-inspired lubricated slippery surfaces via triboelectric electrostatic tweezers(TETs).The TET manipulation of droplets on a slippery surface has many advantages over electrostatic droplet manipulation on a superhydrophobic surface.The electrostatic field induces the redistribution of the charges inside the neutral droplet,which causes the triboelectric charged rod to drive the droplet to move forward under the electrostatic force.Positively or negatively charged droplets can also be driven by TET based on electrostatic attraction and repulsion.TET enables us to manipulate droplets under diverse conditions,including anti-gravity climb,suspended droplets,corrosive liquids,low-surface-tension liquids(e.g.ethanol with a surface tension of 22.3 mN·m^(-1)),different droplet volumes(from 100 nl to 0.5 ml),passing through narrow slits,sliding over damaged areas,on various solid substrates,and even droplets in an enclosed system.Various droplet-related applications,such as motion guidance,motion switching,droplet-based microreactions,surface cleaning,surface defogging,liquid sorting,and cell labeling,can be easily achieved with TETs.
基金support from the Sichuan Science and Technology Program(2019ZDZX0036)the support from the Analytical&Testing Center of Sichuan University.
文摘Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue penetration of the laser is still a challenge for the in vivo diagnosis of deep-seated lesions.Nanomaterials have been universally integrated with spectroscopic imaging techniques for deeper cancer diagnosis in vivo.The components,morphology,and sizes of nanomaterials are delicately designed,which could realize cancer diagnosis in vivo or in situ.Considering the enhanced signal emitting from the nanomaterials,we emphasized their combination with spectroscopic imaging techniques for cancer diagnosis,like the surface-enhanced Raman scattering(SERS),photoacoustic,fluorescence,and laser-induced breakdown spectroscopy(LIBS).Applications ofthe above spectroscopic techniques offer new prospectsfor cancer diagnosis.
基金supported by the National Natural Science Foundation of China(Nos.52122511,61927814,and U20A20290)Anhui Provincial Natural Science Foundation(2308085QF218)+5 种基金China National Postdoctoral Program for Innovative Talents(BX20230351)China Postdoctoral Science Foundation(2023M733382)National Key R&D Program of China(2021YFF0502700)Major Scientific and Technological Projects in Anhui Province(202203a05020014)Fundamental Research Funds for the Central Universities(WK5290000003 and WK2090000058)Youth Innovation Promotion Association CAS(Y2021118)。
文摘Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conductor inside soft actuators can reduce the rigidity and enhance the actuation performance and robustness.Despite research efforts,challenges persist in the flexible fabrication of LM soft actuators and in the improvement of actuation performance.To address these challenges,we developed a fast and robust electromagnetic soft microplate actuator based on a laser-induced selective adhesion transfer method.Equipped with unprecedentedly thin LM circuit and customized low Young’s modulus silicone rubber(1.03 kPa),our actuator exhibits an excellent deformation angle(265.25?)and actuation bending angular velocity(284.66 rad·s^(-1)).Furthermore,multiple actuators have been combined to build an artificial gripper with a wide range of functionalities.Our actuator presents new possibilities for designing small-scaleartificial machines and supports advancements in ultrafast soft and miniaturized robotics.
基金the National Natural Science Foundation of China(Grant No.42020104006).
文摘Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a processebased physical modeling of a pileereinforced reservoir landslide and present an improved deformation analysis involving large strains and water effects.We collect multieperiod point clouds using a terrain laser scanner and reconstruct its deformation field through a point cloud processing workflow.The results show that this method can accurately describe the landslide surface deformation at any time and area by both scalar and vector fields.The deformation fields in different profiles of the physical model and different stages of the evolutionary process provide adequate and detailed landslide information.We analyze the large strain upstream of the pile caused by the pile installation and the consequent violent deformation during the evolutionary process.Furthermore,our method effectively overcomes the challenges of identifying targets commonly encountered in geotechnical modeling where water effects are considered and targets are polluted,which facilitates the deformation analysis at the wading area in a reservoir landslide.Eventually,combining subsurface deformation as well as numerical modeling,we comprehensively analyze the kinematics and failure mechanisms of this complicated object involving landslides and pile foundations as well as water effects.This method is of great significance for any geotechnical modeling concerning large-strain analysis and water effects.
基金funded by the National Key Research and Development Program of China(2018YFE0104200)National Natural Science Foundation of China(51875310,52175274,82172065)Tsinghua Precision Medicine Foundation.
文摘Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.
基金The Health Science and Technology Foundation of Inner Mongolia,No.202201436Science and Technology Innovation Foundation of Inner Mongolia,No.CXYD2022BT01.
文摘BACKGROUND In recent years,confocal laser endomicroscopy(CLE)has become a new endoscopic imaging technology at the microscopic level,which is extensively performed for real-time in vivo histological examination.CLE can be performed to distinguish benign from malignant lesions.In this study,we diagnosed using CLE an asymptomatic patient with poorly differentiated gastric adenocarcinoma.CASE SUMMARY A 63-year-old woman was diagnosed with gastric mucosal lesions,which may be gastric cancer,in the small curvature of the stomach by gastroscopy.She consented to undergo CLE for morphological observation of the gastric mucosa.Through the combination of CLE diagnosis and postoperative pathology,the intraoperative CLE diagnosis was considered to be reliable.According to our experience,CLE can be performed as the first choice for the diagnosis of gastric cancer.CONCLUSION CLE has several advantages over pathological diagnosis.We believe that CLE has great potential in the diagnosis of benign and malignant gastric lesions.
基金Funded by the Basic Research Projects in Shanxi Province(No.202103021224183)。
文摘The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy samples were analyzed.It is found that the rapidly solidified alloy has undergone twice grain refinement during the undercooling process.Characterization and significance of the maximum undercooling refinement structure of Cu60Ni35Co5 at T=253 K were analyzed.High-density defects were observed,such as dislocations,stacking faults networks,and twinning structures.The standard FCC diffraction pattern represents that it is still a single-phase structure.Based on the metallographic diagram,EBSD and TEM data analysis,it is illustrated that the occurrence of grain refinement under high undercooling is due to stress induced recrystallization.In addition,the laser cladding technology is used to coat Co-based alloy(Stellite12) coating on 304 stainless steel substrate;the microstructure of the coating cross-section was analyzed.It was found that the microstructure of the cross-section is presented as columnar crystals,planar crystals,and disordered growth direction,so that the coating has better hardness and wear resistance.By electrochemical corrosion of the substrate and coating,it can be seen that the Co and Cr elements present in the coating are more likely to form a dense passivation film,which improved the corrosion resistance of the coating.
基金funded by National Natural Science Foundation of China, grant numbers 62335006, 62274014, 62235016, 61734006, 61835011, 61991430funded by Key Program of the Chinese Academy of Sciences, grant numbers XDB43000000, QYZDJSSW-JSC027Beijing Municipal Science & Technology Commission, grant number Z221100002722018
文摘We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.
基金financially supported by the Liaoning Province Applied Fundamental Research Program(No.2023JH2/101700039)Liaoning Province Natural Science Foundation(No.2023-MSLH-328)。
文摘Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,its vibration and noise reduction,and damping properties have not been fully studied.Therefore,in this study,the TPMS structures with parameterization were designed by the method of surface migration,and the TPMS structures with high forming quality was manufactured by laser powder bed fusion(LPBF).The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression.The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis,and the damping properties of two structures were obtained by modal tests.For the two structures after heat treatment with the same porosity of 70%,the yield strength of the beam lattice structure reaches 40.76 MPa,elastic modulus is 20.38 GPa,the energy absorption value is 32.23 MJ·m^(-3),the damping ratio is 0.52%.The yield strength,elastic modulus,energy absorption value,and damping ratio of the TPMS structure are 50.74 MPa,25.37 GPa,47.34 MJ·m^(-3),and 0.99%,respectively.The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption,better damping performance,and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity.
基金supported by the Basic Research Program through the National Research Foundation of Korea(NRF)(Nos.2022R1C1C1006593,2022R1A4A3031263,and RS-2023-00271166)the National Science Foundation(Nos.2054098 and 2213693)+1 种基金the National Natural Science Foundation of China(No.52105593)Zhejiang Provincial Natural Science Foundation of China(No.LDQ24E050001).EH acknowledges a fellowship from the Hyundai Motor Chung Mong-Koo Foundation.
文摘Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.