In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a f...In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a focus on the area over the Yellow Sea and the Bohai Sea(32°-42°N,117°-127°E).The objective was to develop an algorithm for fusing and segmenting multi-channel images from geostationary meteorological satellites,specifically for monitoring sea fog in this region.Firstly,the extreme gradient boosting algorithm was adopted to evaluate the data from the 16 channels of the Himawari-8 satellite for sea fog detection,and we found that the top three channels in order of importance were channels 3,4,and 14,which were fused into false color daytime images,while channels 7,13,and 15 were fused into false color nighttime images.Secondly,the simple linear iterative super-pixel clustering algorithm was used for the pixel-level segmentation of false color images,and based on super-pixel blocks,manual sea-fog annotation was performed to obtain fine-grained annotation labels.The deep convolutional neural network D-LinkNet was built on the ResNet backbone and the dilated convolutional layers with direct connections were added in the central part to form a string-and-combine structure with five branches having different depths and receptive fields.Results show that the accuracy rate of fog area(proportion of detected real fog to detected fog)was 66.5%,the recognition rate of fog zone(proportion of detected real fog to real fog or cloud cover)was 51.9%,and the detection accuracy rate(proportion of samples detected correctly to total samples)was 93.2%.展开更多
Sleep stage classification plays a significant role in the accurate diagnosis and treatment of sleep-related diseases.This study aims to develop an efficient deep learning based scheme for correctly identifying sleep ...Sleep stage classification plays a significant role in the accurate diagnosis and treatment of sleep-related diseases.This study aims to develop an efficient deep learning based scheme for correctly identifying sleep stages using multi-biological signals such as electroencephalography(EEG),electrocardiogram(ECG),electromyogram(EMG),and electrooculogram(EOG).Most of the prior studies in sleep stage classification focus on hand-crafted feature extraction methods.Traditional hand-crafted feature extraction methods choose features manually from raw data,which is tedious,and these features are limited in their ability to balance efficiency and accuracy.Moreover,most of the existing works on sleep staging are either single channel(a single-lead EEG may not contain enough information)or only EEG signal based which can not reveal more complicated physical features for reliable classification of various sleep stages.This study proposes an approach to combine Convolutional Neural Networks(CNNs)and Gated Recurrent Units(GRUs)that can discover hidden features from multi-biological signal data to recognize the different sleep stages efficiently.In the proposed scheme,the CNN is designed to extract concealed features from the multi-biological signals,and the GRU is employed to automatically learn the transition rules among different sleep stages.After that,the softmax layers are used to classify various sleep stages.The proposed method was tested on two publicly available databases:Sleep Heart Health Study(SHHS)and St.Vincent’s University Hospital/University College Dublin Sleep Apnoea(UCDDB).The experimental results reveal that the proposed model yields better performance compared to state-of-the-art works.Our proposed scheme will assist in building a new system to deal with multi-channel or multi-modal signal processing tasks in various applications.展开更多
针对传统机器学习方法对特征依赖大,以及传统卷积神经网络只通过提取重要的局部特征来完成识别分类,收敛速度慢的问题,提出了一维多尺度卷积神经网络和门控循环单元相结合的入侵检测方法。该方法使用一维多尺度卷积神经网络加强对特征...针对传统机器学习方法对特征依赖大,以及传统卷积神经网络只通过提取重要的局部特征来完成识别分类,收敛速度慢的问题,提出了一维多尺度卷积神经网络和门控循环单元相结合的入侵检测方法。该方法使用一维多尺度卷积神经网络加强对特征的捕捉能力,加快收敛速度,采用门控循环单元把握空间特征,减少通道数量扩张,降低数据维度。使用KDD CUP 99数据集和密西西比州大学的天然气管道的数据集进行仿真实验,结果表明与经典的机器学习分类器相比,该方法具有较高的入侵检测性能和较好的泛化能力。展开更多
目前网购平台的搜索对象仍以文字为主,致使搜索效率低下。文章以广受女性欢迎的浅口高跟鞋为例,对利用图片进行款式自动识别的技术进行探索。以网购平台上收集的3类浅口高跟鞋(粗跟、细跟、坡跟)共900张图片(每款随机抽取200张作为训练...目前网购平台的搜索对象仍以文字为主,致使搜索效率低下。文章以广受女性欢迎的浅口高跟鞋为例,对利用图片进行款式自动识别的技术进行探索。以网购平台上收集的3类浅口高跟鞋(粗跟、细跟、坡跟)共900张图片(每款随机抽取200张作为训练集,剩余100张作为测试集)为研究对象,然后利用深度学习中的Faster R CNN检测模型对浅口高跟鞋款式进行训练和测试识别。结果表明:无论以鞋跟为目标区域,还是以整只鞋为检测区域,利用该模型都能对浅口高跟鞋图像实现良好的款式识别,准确率可达94%以上,且不用经过人为特征提取,方便可行;Faster R CNN检测模型的总体精度和检测速度比R CNN、SPP-Net、FAST R CNN更优。展开更多
The paper reviews and extends an emerging body of theoretical results on deep learning including the conditions under which it can be exponentially better than shallow learning. A class of deep convolutional networks ...The paper reviews and extends an emerging body of theoretical results on deep learning including the conditions under which it can be exponentially better than shallow learning. A class of deep convolutional networks represent an important special case of these conditions, though weight sharing is not the main reason for their exponential advantage. Implications of a few key theorems are discussed, together with new results, open problems and conjectures.展开更多
基金National Key R&D Program of China(2021YFC3000905)Open Research Program of the State Key Laboratory of Severe Weather(2022LASW-B09)National Natural Science Foundation of China(42375010)。
文摘In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a focus on the area over the Yellow Sea and the Bohai Sea(32°-42°N,117°-127°E).The objective was to develop an algorithm for fusing and segmenting multi-channel images from geostationary meteorological satellites,specifically for monitoring sea fog in this region.Firstly,the extreme gradient boosting algorithm was adopted to evaluate the data from the 16 channels of the Himawari-8 satellite for sea fog detection,and we found that the top three channels in order of importance were channels 3,4,and 14,which were fused into false color daytime images,while channels 7,13,and 15 were fused into false color nighttime images.Secondly,the simple linear iterative super-pixel clustering algorithm was used for the pixel-level segmentation of false color images,and based on super-pixel blocks,manual sea-fog annotation was performed to obtain fine-grained annotation labels.The deep convolutional neural network D-LinkNet was built on the ResNet backbone and the dilated convolutional layers with direct connections were added in the central part to form a string-and-combine structure with five branches having different depths and receptive fields.Results show that the accuracy rate of fog area(proportion of detected real fog to detected fog)was 66.5%,the recognition rate of fog zone(proportion of detected real fog to real fog or cloud cover)was 51.9%,and the detection accuracy rate(proportion of samples detected correctly to total samples)was 93.2%.
文摘Sleep stage classification plays a significant role in the accurate diagnosis and treatment of sleep-related diseases.This study aims to develop an efficient deep learning based scheme for correctly identifying sleep stages using multi-biological signals such as electroencephalography(EEG),electrocardiogram(ECG),electromyogram(EMG),and electrooculogram(EOG).Most of the prior studies in sleep stage classification focus on hand-crafted feature extraction methods.Traditional hand-crafted feature extraction methods choose features manually from raw data,which is tedious,and these features are limited in their ability to balance efficiency and accuracy.Moreover,most of the existing works on sleep staging are either single channel(a single-lead EEG may not contain enough information)or only EEG signal based which can not reveal more complicated physical features for reliable classification of various sleep stages.This study proposes an approach to combine Convolutional Neural Networks(CNNs)and Gated Recurrent Units(GRUs)that can discover hidden features from multi-biological signal data to recognize the different sleep stages efficiently.In the proposed scheme,the CNN is designed to extract concealed features from the multi-biological signals,and the GRU is employed to automatically learn the transition rules among different sleep stages.After that,the softmax layers are used to classify various sleep stages.The proposed method was tested on two publicly available databases:Sleep Heart Health Study(SHHS)and St.Vincent’s University Hospital/University College Dublin Sleep Apnoea(UCDDB).The experimental results reveal that the proposed model yields better performance compared to state-of-the-art works.Our proposed scheme will assist in building a new system to deal with multi-channel or multi-modal signal processing tasks in various applications.
文摘针对传统机器学习方法对特征依赖大,以及传统卷积神经网络只通过提取重要的局部特征来完成识别分类,收敛速度慢的问题,提出了一维多尺度卷积神经网络和门控循环单元相结合的入侵检测方法。该方法使用一维多尺度卷积神经网络加强对特征的捕捉能力,加快收敛速度,采用门控循环单元把握空间特征,减少通道数量扩张,降低数据维度。使用KDD CUP 99数据集和密西西比州大学的天然气管道的数据集进行仿真实验,结果表明与经典的机器学习分类器相比,该方法具有较高的入侵检测性能和较好的泛化能力。
文摘目前网购平台的搜索对象仍以文字为主,致使搜索效率低下。文章以广受女性欢迎的浅口高跟鞋为例,对利用图片进行款式自动识别的技术进行探索。以网购平台上收集的3类浅口高跟鞋(粗跟、细跟、坡跟)共900张图片(每款随机抽取200张作为训练集,剩余100张作为测试集)为研究对象,然后利用深度学习中的Faster R CNN检测模型对浅口高跟鞋款式进行训练和测试识别。结果表明:无论以鞋跟为目标区域,还是以整只鞋为检测区域,利用该模型都能对浅口高跟鞋图像实现良好的款式识别,准确率可达94%以上,且不用经过人为特征提取,方便可行;Faster R CNN检测模型的总体精度和检测速度比R CNN、SPP-Net、FAST R CNN更优。
基金supported by the Center for Brains,Minds and Machines(CBMM),NSF STC award CCF(No.1231216),and ARO(No W911NF-15-1-0385)
文摘The paper reviews and extends an emerging body of theoretical results on deep learning including the conditions under which it can be exponentially better than shallow learning. A class of deep convolutional networks represent an important special case of these conditions, though weight sharing is not the main reason for their exponential advantage. Implications of a few key theorems are discussed, together with new results, open problems and conjectures.