期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Parameterized time-frequency analysis to separate multi-radar signals 被引量:1
1
作者 Wenlong Lu Junwei Xie +1 位作者 Heming Wang Chuan Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第3期493-502,共10页
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ... Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation. 展开更多
关键词 intercepted multi-radar signal parameterized time-frequency analysis DEMODULATION adaptive filtering
下载PDF
Early detection of sudden cardiac death by using classical linear techniques and time-frequency methods on electrocardiogram signals 被引量:2
2
作者 Elias Ebrahimzadeh Mohammad Pooyan 《Journal of Biomedical Science and Engineering》 2011年第11期699-706,共8页
Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate v... Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate variability signal through the classical and time-frequency methods. At first, one minute of ECG signals, just before the cardiac death event are extracted and used to compute heart rate variability (HRV) signal. Five features in time domain and four features in frequency domain are extracted from the HRV signal and used as classical linear features. Then the Wigner Ville transform is applied to the HRV signal, and 11 extra features in the time-frequency (TF) domain are obtained. In order to improve the performance of classification, the principal component analysis (PCA) is applied to the obtained features vector. Finally a neural network classifier is applied to the reduced features. The obtained results show that the TF method can classify normal and SCD subjects, more efficiently than the classical methods. A MIT-BIH ECG database was used to evaluate the proposed method. The proposed method was implemented using MLP classifier and had 74.36% and 99.16% correct detection rate (accuracy) for classical features and TF method, respectively. Also, the accuracy of the KNN classifier were 73.87% and 96.04%. 展开更多
关键词 SUDDEN CARDIAC DEATH Heart Rate Variability time-frequency Transform ELECTROCARDIOGRAM signal Linear Processing
下载PDF
Joint Time-Frequency Analysis of Seismic Signals:A Critical Review
3
作者 Roshan Kumar Wei Zhao Vikash Singh 《Structural Durability & Health Monitoring》 EI 2018年第2期65-83,共19页
This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical... This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical basis of short time Fourier transform,Gabor transform,wavelet transform,S-transform,Wigner distribution,Wigner-Ville distribution,Pseudo Wigner-Ville distribution,Smoothed Pseudo Wigner-Ville distribution,Choi-William distribution,Born-Jordan Distribution and cone shape distribution are presented.The strengths and weaknesses of each technique are verified by applying them to a particular synthetic seismic signal and recorded real time earthquake data. 展开更多
关键词 time-frequency distribution Seismic signals Cross-term interference Autoterm Gabor transform Wigner-Ville distribution
下载PDF
Cyclic-Auto-Correlation Based Timing Estimation Algorithm for Time-Frequency Overlapping Multi-Carrier Signals
4
作者 Xing Zhang Jian-Hao Hu 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第3期223-233,共11页
In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research... In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research in public published papers.This paper proposes two timing estimation algorithms,which are non-data-aided and based on the cyclic auto-correlation function.In order to evaluate the performance of the proposed algorithms,the theoretical bound of the timing estimation is derived.According to the analyses and simulation results,the effectiveness of the proposed algorithms has been demonstrated.It shows that MethodⅠhas better performance than MethodⅡ.However,MethodⅡdoes not need prior information,so it has a wider range of applications. 展开更多
关键词 Cyclic auto-correlation orthogonal frequency division multiplexing(OFDM) time-frequency overlapping signal timing estimation
下载PDF
An Improved Second-Order Multisynchrosqueezing Transform for the Analysis of Nonstationary Signals 被引量:1
5
作者 Kewen Wang Yajun Shang +1 位作者 Yongzheng Lu Tianran Lin 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第3期183-189,共7页
Second-order multisynchrosqueezing transform(SMSST),an effective tool for the analysis of nonstationary signals,can significantly improve the time-frequency resolution of a nonstationary signal.Though the noise energy... Second-order multisynchrosqueezing transform(SMSST),an effective tool for the analysis of nonstationary signals,can significantly improve the time-frequency resolution of a nonstationary signal.Though the noise energy in the signal can also be enhanced in the transform which can largely affect the characteristic frequency component identification for an accurate fault diagnostic.An improved algorithm termed as an improved second-order multisynchrosqueezing transform(ISMSST)is then proposed in this study to alleviate the problem of noise interference in the analysis of nonstationary signals.In the study,the time-frequency(TF)distribution of a nonstationary signal is calculated first using SMSST,and then aδfunction is constructed based on a newly proposed time-frequency operator(TFO)which is then substituted back into SMSST to produce a noisefree time frequency result.The effectiveness of the technique is validated by comparing the TF results obtained using the proposed algorithm and those using other TFA techniques in the analysis of a simulated signal and an experimental data.The result shows that the current technique can render the most accurate TFA result within the TFA techniques employed in this study. 展开更多
关键词 fault diagnosis nonstationary signals synchrosqueezing transform time-frequency operator
下载PDF
Detection method of forward-scatter signal based on Rényi entropy 被引量:1
6
作者 ZHENG Yuqing AI Xiaofeng +2 位作者 YANG Yong ZHAO Feng XIAO Shunping 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期865-873,共9页
The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the targe... The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection. 展开更多
关键词 forward scatter radar(FSR) Global Navigation Satellite System(GNSS) time-frequency distribution Rényi entropy signal detection
下载PDF
A Recursive Method of Time-Frequency Analysis for the Signal Processing of Flutter Test with Progression Variable Speed 被引量:1
7
作者 宋叔飚 裴承鸣 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第3期213-217,共5页
Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tr... Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method. 展开更多
关键词 flutter test with progression variable speed (FTPVS) non-stationary signal processing recursive time-frequency analysis (RTFA)
下载PDF
A method of multi-channel reference signals acquiring in broadband ANC
8
作者 马令坤 黄建国 张立杰 《Journal of Marine Science and Application》 2008年第3期190-194,共5页
In a flank array on an unmanned underwater vehicle (UUV), self-generated noise which has broadband and colored spectrum property in frequency and spatial domain is the main factor affecting the performance of weak s... In a flank array on an unmanned underwater vehicle (UUV), self-generated noise which has broadband and colored spectrum property in frequency and spatial domain is the main factor affecting the performance of weak signal detection, so the technique of adaptive noise cancellation (ANC) as well as physical denoising and active noise cancellation are often used in practice. Because ANC is based on correlations, improvements in performance come from better correlation between reference signals and primary signals. Taking full advantage of the characteristics of flank arrays and the characteristics of information obtained from hydrophones, a new method for reference signal acquisition for adaptive noise cancellation is proposed, in which the multi-channel reference signals are obtained by accurate delaying for a given direction of arrival (DOA) and differencing between adjacent outputs of array elements. The validity of the proposed method was verified through system modeling simulations and lake experiments which showed good performance with little additional computational burden. 展开更多
关键词 weak signal detection adaptive noise cancellation multi-channel reference signal
下载PDF
Time-Frequency Entropy Analysis of Arc Signal in Non-Stationary Submerged Arc Welding
9
作者 Kuanfang He Siwen Xiao +1 位作者 Jigang Wu Guanbin Wang 《Engineering(科研)》 2011年第2期105-109,共5页
The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employ... The use of time-frequency entropy to quantitatively assess the stability of submerged arc welding process considering the distribution features of arc energy is reported in this paper. Time-frequency entropy is employed to calculate and analyze the stationary current signals, non-stationary current and voltage signals in the submerged arc welding process. It is obtained that time-frequency entropy of arc signal can be used as arc stability judgment criteria of submerged arc welding. Experimental results are provided to confirm the effectiveness of this approach. 展开更多
关键词 NON-STATIONARY signal SUBMERGED ARC Welding time-frequency ENTROPY Stability
下载PDF
Non-Stationary Signal Segmentation and Separation from Joint Time-Frequency Plane
10
作者 Abdullah Ali Alshehri 《Journal of Signal and Information Processing》 2012年第3期339-343,共5页
Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, t... Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectrogram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter applied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the boundaries of the candidate segments. 展开更多
关键词 signal Segmentation time-frequency Distribution Short-Time FOURIER TRANSFORM NON-STATIONARY WIENER MASKING
下载PDF
Research on time-frequency cross mutual of motor imagination data based on multichannel EEG signal
11
作者 REN Bin PAN Yunjie 《High Technology Letters》 EI CAS 2022年第1期21-29,共9页
At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels w... At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels will result in a large amount of calculation.Components irrelevant to the task will interfere with the required features,which is not conducive to the real-time processing of EEG data.Using too few channels will result in the loss of useful information and low robustness.A method of selecting data channels for motion imagination is proposed based on the time-frequency cross mutual information(TFCMI).This method determines the required data channels in a targeted manner,uses the common spatial pattern mode for feature extraction,and uses support vector ma-chine(SVM)for feature classification.An experiment is designed to collect motor imagery EEG da-ta with four experimenters and adds brain-computer interface(BCI)Competition IV public motor imagery experimental data to verify the method.The data demonstrates that compared with the meth-od of selecting too many or too few data channels,the time-frequency cross mutual information meth-od using motor imagery can improve the recognition accuracy and reduce the amount of calculation. 展开更多
关键词 electroencephalogram(EEG)signal time-frequency cross mutual information(TFCMI) motion imaging common spatial pattern(CSP) support vector machine(SVM)
下载PDF
Application of sparse time-frequency decomposition to seismic data 被引量:3
12
作者 王雄文 王华忠 《Applied Geophysics》 SCIE CSCD 2014年第4期447-458,510,共13页
The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time... The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results. 展开更多
关键词 time-frequency analysis sparse time-frequency decomposition nonstationary signal RESOLUTION
下载PDF
Parametric adaptive time-frequency representation based on time-sheared Gabor atoms 被引量:2
13
作者 Ma Shiwei Zhu Xiaojin Chen Guanghua Wang Jian Cao Jialin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期1-7,共7页
A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ... A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing. 展开更多
关键词 time-frequency analysis Gabor atom Time-shear Adaptive signal decomposition time-frequency distribution.
下载PDF
Analysis of frequency shifting in seismic signals using Gabor-Wigner transform 被引量:1
14
作者 Roshan Kumar P.Sumathi Ashok Kumar 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第4期715-724,共10页
A hybrid time-frequency method known as Gabor-Wigner transform (GWT) is introduced in this paper for examining the time-frequency patterns of earthquake damaged buildings. GWT is developed by combining the Gabor trans... A hybrid time-frequency method known as Gabor-Wigner transform (GWT) is introduced in this paper for examining the time-frequency patterns of earthquake damaged buildings. GWT is developed by combining the Gabor transform (GT) and Wigner-Ville distribution (WVD). GT and WVD have been used separately on synthetic and recorded earthquake data to identify frequency shifting due to earthquake damages, but GT is prone to windowing effect and WVD involves ambiguity function. Hence to obtain better clarity and to remove the cross terms (frequency interference), GT and WVD are judiciously combined and the resultant GWT used to identify frequency shifting. Synthetic seismic response of an instrumented building and real-time earthquake data recorded on the building were investigated using GWT. It is found that GWT offers good accuracy for even slow variations in frequency, good time-frequency resolution, and localized response. Presented results confirm the efficacy of GWT when compared with GT and WVD used separately. Simulation results were quantified by the Renyi entropy measures and GWT shown to be an adequate technique in identifying localized response for structural damage detection. 展开更多
关键词 time-frequency distribution seismic signals cross-term interference Gabor transform Wigner- Ville distribution Gabor-Wigner transform
下载PDF
Chirplet Signal and Empirical Mode Decompositions of Ultrasonic Signals for Echo Detection and Estimation 被引量:1
15
作者 Yufeng Lu Erdal Oruklu Jafar Saniie 《Journal of Signal and Information Processing》 2013年第2期149-157,共9页
In this study, the performance of chirplet signal decomposition (CSD) and empirical mode decomposition (EMD) coupled with Hilbert spectrum have been evaluated and compared for ultrasonic imaging applications. Numerica... In this study, the performance of chirplet signal decomposition (CSD) and empirical mode decomposition (EMD) coupled with Hilbert spectrum have been evaluated and compared for ultrasonic imaging applications. Numerical and experimental results indicate that both the EMD and CSD are able to decompose sparsely distributed chirplets from noise. In case of signals consisting of multiple interfering chirplets, the CSD algorithm, based on successive search for estimating optimal chirplet parameters, outperforms the EMD algorithm which estimates a series of intrinsic mode functions (IMFs). In particular, we have utilized the EMD as a signal conditioning method for Hilbert time-frequency representation in order to estimate the arrival time and center frequency of chirplets in order to quantify the ultrasonic signals. Experimental results clearly exhibit that the combined EMD and CSD is an effective processing tools to analyze ultrasonic signals for target detection and pattern recognition. 展开更多
关键词 Ultrasound HILBERT time-frequency Representation Empirical Mode DECOMPOSITION CHIRPLET signal DECOMPOSITION Detection ESTIMATION
下载PDF
Time-Varying Bandpass Filter Based on Assisted Signals for AM-FM Signal Separation: A Revisit 被引量:1
16
作者 Guanlei Xu Xiaotong Wang +2 位作者 Xiaogang Xu Lijia Zhou Limin Shao 《Journal of Signal and Information Processing》 2013年第3期229-242,共14页
In this paper, a new signal separation method mainly for AM-FM components blended in noises is revisited based on the new derived time-varying bandpass filter (TVBF), which can separate the AM-FM components whose freq... In this paper, a new signal separation method mainly for AM-FM components blended in noises is revisited based on the new derived time-varying bandpass filter (TVBF), which can separate the AM-FM components whose frequencies have overlapped regions in Fourier transform domain and even have crossed points in time-frequency distribution (TFD) so that the proposed TVBF seems like a “soft-cutter” that cuts the frequency domain to snaky slices with rational physical sense. First, the Hilbert transform based decomposition is analyzed for the analysis of nonstationary signals. Based on the above analysis, a hypothesis under a certain condition that AM-FM components can be separated successfully based on Hilbert transform and the assisted signal is developed, which is supported by representative experiments and theoretical performance analyses on a error bound that is shown to be proportional to the product of frequency width and noise variance. The assisted signals are derived from the refined time-frequency distributions via image fusion and least squares optimization. Experiments on man-made and real-life data verify the efficiency of the proposed method and demonstrate the advantages over the other main methods. 展开更多
关键词 TIME-VARYING BANDPASS Filter (TVBF) HILBERT Tranform ASSISTED signal AM-FM Component time-frequency Distribution (TFD)
下载PDF
A NEW QUADRATIC TIME-FREQUENCY DISTRIBUTIONAND A COMPARATIVE STUDY OF SEVERAL POPULARQUADRATIC TIME-FREQUENCY DISTRIBUTIONS
17
作者 Liu Guizhong Liu Zhimei(information Engineering Institute, Xi’an Jiaotong University, Xi’an 710049) 《Journal of Electronics(China)》 1997年第2期104-111,共8页
A new quadratic time-frequency distribution (TFD) with a compound kernel is proposed and a comparative study of several popular quadratic TFD is carried out. It is shown that the new TFD with compound kernel has stron... A new quadratic time-frequency distribution (TFD) with a compound kernel is proposed and a comparative study of several popular quadratic TFD is carried out. It is shown that the new TFD with compound kernel has stronger ability than the exponential distribution (ED) and the cone-shaped kernel distribution (CKD) in reducing cross terms, meanwhile almost not decreasing the time-frequency resolution of ED or CKD. 展开更多
关键词 signal PROCESSING time-frequency analysis time-frequency distribution of Cohen’s class
下载PDF
IDENTIFICATION OF NONLINEAR DYNAMIC SYSTEMS:TIME-FREQUENCY FILTERING AND SKELETON CURVES
18
作者 王丽丽 张景绘 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第2期210-219,共10页
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is define... The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique. 展开更多
关键词 system identification nonlinear dynamic system non-stationary signal time-frequency analysis Hilbert transform
下载PDF
The Improved Design of Multi-channel Thin Gap Chamber Simulation Signal Source for the ATLAS Detector Upgrade
19
作者 胡坤 路后兵 +3 位作者 王旭 李锋 韩良 金革 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期35-39,共5页
We develop an improved design of thin gap chamber (TGC) simulation signal source. To further simulate the feature of TGC detector, a novel thought is proposed. The TGC source has 256 channels. Every channel can rand... We develop an improved design of thin gap chamber (TGC) simulation signal source. To further simulate the feature of TGC detector, a novel thought is proposed. The TGC source has 256 channels. Every channel can randomly output the signal in 25 ns. The design is based on true random number generator (TRNG). Considering the electrical connection between the TGC source and the developing trigger electronics, the GFZ connector is used. The experimental results show that the improved TGC simulation signal source can uniformly output the random signal in every channel. The output noise is less than 3 mVrms. 展开更多
关键词 TGC The Improved Design of multi-channel Thin Gap Chamber Simulation signal Source for the ATLAS Detector Upgrade ATLAS
下载PDF
Application of Local Wave Time-Frequency Spectrum and Neural Networks to Fault Classification in Rotating Machine
20
作者 HAOZhi-hua MAXiao-jiang 《International Journal of Plant Engineering and Management》 2005年第1期36-41,共6页
A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to pro... A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to produce the representation of the signal. This methodallows the decomposition of one-dimensional signals into intrinsic mode functions (IMFs) usingempirical mode decomposition and the calculation of a meaningful multi-component instantaneousfrequency. Applied to fault signals , it provides new time-frequency attributes. Then the momentsand margins of the time-frequency spectrum are calculated as the feature vectors. The probabilisticneural network is used to classify different fault modes. The accuracy and robustness of theproposed methods is investigated on signals obtained during the different fault modes (early rub,loose, misalignment of the rotor). 展开更多
关键词 signal classification neural network local wave empirical modedecomposition time-frequency representation
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部