In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabric...In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabricated using the gallium arsenide(GaAs)integrated passive device(IPD)process,is proposed for 5G massive multiple-input multiple-output(MIMO)application.An inverted DPA structure with a low-Q output network is proposed to achieve better bandwidth performance,and a single-driver architecture is adopted for a chip with high gain and small area.The proposed DPA has a bandwidth of 4.4-5.0 GHz that can achieve a saturation of more than 45.0 dBm.The gain compression from 37 dBm to saturation power is less than 4 dB,and the average power-added efficiency(PAE)is 36.3%with an 8.5 dB peak-to-average power ratio(PAPR)in 4.5-5.0 GHz.The measured adjacent channel power ratio(ACPR)is better than50 dBc after digital predistortion(DPD),exhibiting satisfactory linearity.展开更多
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not ...This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highly- nonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model ofa 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.展开更多
Hybrid integration ofⅢ-Ⅴand ferroelectric materials is being broadly adopted to enhance functionalities in silicon photonic integrated circuits(PICs).Bonding and transfer printing have been the popular approaches fo...Hybrid integration ofⅢ-Ⅴand ferroelectric materials is being broadly adopted to enhance functionalities in silicon photonic integrated circuits(PICs).Bonding and transfer printing have been the popular approaches for integration of III–V gain media with silicon PICs.Similar approaches are also being considered for ferroelectrics to enable larger RF modulation bandwidths,higher linearity,lower optical loss integrated optical modulators on chip.In this paper,we review existing integration strategies ofⅢ-Ⅴmaterials and present a route towards hybrid integration of bothⅢ-Ⅴand ferroelectrics on the same chip.We show that adiabatic transformation of the optical mode between hybrid ferroelectric and silicon sections enables efficient transfer of optical modal energies for maximum overlap of the optical mode with the ferroelectric media,similar to approaches adopted to maximize optical overlap with the gain section,thereby reducing lasing thresholds for hybridⅢ-Ⅴintegration with silicon PICs.Preliminary designs are presented to enable a foundry compatible hybrid integration route of diverse functionalities on silicon PICs.展开更多
The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on t...The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT.The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n_(bar)~(7)×10^(19)m^(-3).In this case,the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10^(5) rad/s to 10^(3) rad/s,which means that the turbulent heat transport is not dominant.While in the scenarios characterized by lower densities,such as n_(bar)~4×10^(19)m^(-3),turbulent transport becomes dominant in determining heat transport.The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10^(3) rad/s to 10^(5) rad/s.Despite the ion temperature rising,the rotation velocity does not obviously affect electron temperature or density.Additionally,it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density.展开更多
Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy...Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.展开更多
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink...Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink ISAC system that simultaneously serves multiple single-antenna communication users and senses multiple targets. Hybrid RIS differs from fully passive RIS in that it is composed of both active and passive elements, with the active elements having the effect of amplifying the signal in addition to phase-shifting. We maximize the achievable sum rate of communication users by collaboratively improving the beamforming matrix at the dual function base station(DFBS) and the phase-shifting matrix of the hybrid RIS, subject to the transmit power constraint at the DFBS, the signal-to-interference-plus-noise-ratio(SINR) constraint of the radar echo signal and the RIS constraint are satisfied at the same time. The builtin RIS-assisted ISAC design problem model is significantly non-convex due to the fractional objective function of this optimization problem and the coupling of the optimization variables in the objective function and constraints. As a result, we provide an effective alternating optimization approach based on fractional programming(FP) with block coordinate descent(BCD)to solve the optimization variables. Results from simulations show that the hybrid RIS-assisted ISAC system outperforms the other benchmark solutions.展开更多
An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid in...An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid integration technology. Multimode output waveguides in the silica AWG with 2% refractive index difference are used to obtain fiat-top spectra. The output waveguide facet is polished to 45° bevel to change the light propagation direction into the mesa-type PIN PD, which simplifies the packaging process. The experimentM results show that the single channel I dB bandwidth of AWG ranges from 2.12nm to 3.06nm, the ROSA responsivity ranges from 0.097 A/W to 0.158A/W, and the 3dB bandwidth is up to 11 GHz. It is promising to be applied in the eight-lane WDM transmission system in data center interconnection.展开更多
This research undertakes a nuanced examination of the intersections and distinctions between these two diverse musical traditions.Employing a meticulous comparative analysis,the study scrutinizes fundamental musical e...This research undertakes a nuanced examination of the intersections and distinctions between these two diverse musical traditions.Employing a meticulous comparative analysis,the study scrutinizes fundamental musical elements such as scales,modes,and compositional styles,illuminating shared threads and distinctive attributes that characterize Chinese and Western music.Against the backdrop of contemporary global dynamics,the research investigates the ongoing integration of these musical cultures.It explores the impact of globalization and technological advancements,revealing instances of cross-cultural collaboration and the emergence of hybrid musical forms.Augmenting theoretical discussions with concrete case studies,the paper offers illuminating examples of how Chinese and Western musical elements interweave,contributing to the evolving landscape of global music.This research not only advances scholarly understanding but also contributes practical insights for musicians,educators,and enthusiasts navigating the evolving dynamics of cross-cultural musical expression.By elucidating the intricate relationship between Chinese and Western music cultures,the paper underscores the richness borne out of their interaction and the cultural synthesis that defines contemporary musical landscapes.展开更多
Hybrid simulation is a powerful test method for evaluating the seismic performance of structural systems. This method makes it feasible that only critical components of a structure be experimentally tested. This paper...Hybrid simulation is a powerful test method for evaluating the seismic performance of structural systems. This method makes it feasible that only critical components of a structure be experimentally tested. This paper presents a newly proposed integration algorithm for seismic hybrid simulation which is aimed to extend its capabilities to a wide range of systems where existing methods encounter some limitations. In the proposed method, which is termed the variable time step (VTS) integration method, an implicit scheme is employed for hybrid simulation by eliminating the iterative phase on experimental element, the phase which is necessary in regular implicit applications. In order to study the effectiveness of the VTS method, a series of numerical investigations are conducted which show the successfulness of the VTS method in obtaining accurate, stable and converged responses. Then, in a comparative approach, the improved accuracy of the VTS method over commonly used integration methods is demonstrated. The stability of the VTS method is also studied and the results show that it provides conditional stability; however, its stability limit is well beyond the accuracy limit. The effect of time delay on the VTS method results is also investigated and it is shown that the VTS method is quite successful in handling this experimental error.展开更多
Flow birefringent method and its data processing was reviewed and a new hybrid method of flow birefringence and boundary integration was introduced. The basic equations and boundary conditions suitable to the hybrid m...Flow birefringent method and its data processing was reviewed and a new hybrid method of flow birefringence and boundary integration was introduced. The basic equations and boundary conditions suitable to the hybrid method were derived, and a comparison of the hybrid and other classical methods was given. Finally as an example, the flow in a step converging tube was analyzed by the given method.展开更多
Precise integration methods to solve structural dynamic responses and the corresponding time integration formula are composed of two parts: the multiplication of an exponential matrix with a vector and the integratio...Precise integration methods to solve structural dynamic responses and the corresponding time integration formula are composed of two parts: the multiplication of an exponential matrix with a vector and the integration term. The second term can be solved by the series solution. Two hybrid granularity parallel algorithms are designed, that is, the exponential matrix and the first term are computed by the fine-grained parallel algorithra and the second term is computed by the coarse-grained parallel algorithm. Numerical examples show that these two hybrid granularity parallel algorithms obtain higher speedup and parallel efficiency than two existing parallel algorithms.展开更多
Colloidal quantum dots (CQDs) are semiconductor nanocrystalswith diameters about 2 to 20 nm. At such nanoscales,the CQDs exhibit obvious quantum and dielectric confinementeffects[1]. The CQDs are usually composed of I...Colloidal quantum dots (CQDs) are semiconductor nanocrystalswith diameters about 2 to 20 nm. At such nanoscales,the CQDs exhibit obvious quantum and dielectric confinementeffects[1]. The CQDs are usually composed of II–VI, III–V,and IV–VI semiconductors fabricated by the low-cost wet chemicalsynthetic methods. The emission wavelengths of CQDs,which can be easily tuned by the sizes, shapes, and compositions,have already covered the whole range of the visible andnear-infrared (NIR) spectra (from 440 to 1530 nm). Owing tothe low-cost fabrications, high quantum yields (QYs^100%), tunableemission wavelengths, and outstanding stability, the solution-processable CQDs can act as the nanoscale buildingblocks with large gains, and they have attracted enormous attentionin the lasing applications in the past decade.展开更多
In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fib...In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fiber was used to adjust the rotation of the polarization direction caused by the optical isolator.The whole optical path structure,including the laser chip,lens,fiber,and modulator chip,was simulated to achieve high optical output efficiency.After a series of process improvements,a module with an output extinction ratio of 34 dB and a bandwidth of 20.5 GHz(from 2 GHz)was obtained.The optical output efficiency of the whole module reached approximately 21%.The link performance of the module was also measured.展开更多
The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gr...The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization.展开更多
Aim: To study the integration of hepatitis B virus (HBV) DNA into sperm chromosomes in hepatitis B patients and the features of its integration. Methods: Sperm chromosomes of 14 subjects (5 healthy controls and 9 HB p...Aim: To study the integration of hepatitis B virus (HBV) DNA into sperm chromosomes in hepatitis B patients and the features of its integration. Methods: Sperm chromosomes of 14 subjects (5 healthy controls and 9 HB patients, including 1 acute hepatitis B, 2 chronic active hepatitis B, 4 chronic persistent hepatitis B, 2 HBsAg chronic carriers with no clinical symptoms) were prepared using interspecific in vitro fertilization between zona-free hamster oocytes and human spermatozoa. Fluorescence in situ hybridization (FISH) to sperm chromosome spreads was carried out with biotin-labeled full length HBV DNA probe to detect the specific HBV DNA sequences in the sperm chromosomes. Results: Specific fluorescent signal spots for HBV DNA were seen in sperm chromosomes of one patient with chronic persistent hepatitis B. In 9(9/42) sperm chromosome complements containing fluorescent signal spots, one presented 5 obvious FISH spots and the others 2 to 4 signals. The fluorescence intensity showed significant difference among the signal spots. The distribution of signal sites among chromosomes seems to be random. Conclusion: HBV could integrate into human sperm chromosomes. Results suggest that the possibility of vertical transmission of HBV via the germ line to the next generation is present.展开更多
An integrated system has been provided with a-Si/H solar cells as energy conversion device,NiCo2O4 battery-supercapacitor hybrid(BSH)as energy storage device,and light emitting diodes(LEDs)as energy utilization device...An integrated system has been provided with a-Si/H solar cells as energy conversion device,NiCo2O4 battery-supercapacitor hybrid(BSH)as energy storage device,and light emitting diodes(LEDs)as energy utilization device.By designing three-dimensional hierarchical NiCo2O4 arrays as faradic electrode,with capacitive electrode of active carbon(AC),BSHs were assembled with energy density of 16.6 Wh kg-1,power density of 7285 W kg-1,long-term stability with 100% retention after 15,000 cycles,and rather low self-discharge.The NiCo2O4//AC BSH was charged to 1.6 V in 1 s by solar cells and acted as reliable sources for powering LEDs.The integrated system is rational for operation,having an overall efficiency of 8.1% with storage efficiency of 74.24%.The integrated system demonstrates a stable solar power conversion,outstanding energy storage behavior,and reliable light emitting.Our study offers a precious strategy to design a self-driven integrated system for highly efficient energy utilization.展开更多
Phaeocystis globosa Scherffel is one of the common harmful algae species in coastal waters of the southeastern China.In this study,sandwich hybridization integrated with nuclease protection assay(NPA-SH)was used to qu...Phaeocystis globosa Scherffel is one of the common harmful algae species in coastal waters of the southeastern China.In this study,sandwich hybridization integrated with nuclease protection assay(NPA-SH)was used to qualitatively and quantitatively detect P. globosa.Results showed that this method had good applicability and validity in analyzing the samples from laboratory cultures and from fields.The linear regression equation for P.globosa was obtained,and the lowest detection number of cells was 1.8×104 c...展开更多
In this paper, we discuss the existence of solutions for a nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Our main result is based on a hybrid fixed point theorem for a sum...In this paper, we discuss the existence of solutions for a nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Our main result is based on a hybrid fixed point theorem for a sum of three operators due to Dhage, and is well illustrated with the aid of an example.展开更多
The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode...The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode of the two can better meet the needs of the electric power system. This article first presents an analysis of the necessity and superiority of such mode, then explains its meaning and analyzes the working routes. Finally, it proposes the business modes as follows: low price pumping water electricity plus nuclear power in the near term;nuclear power shifted to pumped storage power participating in market competition in the middle term;and, in the long term, nuclear power shifted to pumped storage power as primary and serving as an electric power system when needed.展开更多
基金supported in part by the National Key Research and Development Program of China(2021YFA0716601)the National Science Fund(62225111).
文摘In this paper,a hybrid integrated broadband Doherty power amplifier(DPA)based on a multi-chip module(MCM),whose active devices are fabricated using the gallium nitride(GaN)process and whose passive circuits are fabricated using the gallium arsenide(GaAs)integrated passive device(IPD)process,is proposed for 5G massive multiple-input multiple-output(MIMO)application.An inverted DPA structure with a low-Q output network is proposed to achieve better bandwidth performance,and a single-driver architecture is adopted for a chip with high gain and small area.The proposed DPA has a bandwidth of 4.4-5.0 GHz that can achieve a saturation of more than 45.0 dBm.The gain compression from 37 dBm to saturation power is less than 4 dB,and the average power-added efficiency(PAE)is 36.3%with an 8.5 dB peak-to-average power ratio(PAPR)in 4.5-5.0 GHz.The measured adjacent channel power ratio(ACPR)is better than50 dBc after digital predistortion(DPD),exhibiting satisfactory linearity.
基金National Science Foundation(NSF)under grant No.CMMI-0748111
文摘This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highly- nonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model ofa 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.
文摘Hybrid integration ofⅢ-Ⅴand ferroelectric materials is being broadly adopted to enhance functionalities in silicon photonic integrated circuits(PICs).Bonding and transfer printing have been the popular approaches for integration of III–V gain media with silicon PICs.Similar approaches are also being considered for ferroelectrics to enable larger RF modulation bandwidths,higher linearity,lower optical loss integrated optical modulators on chip.In this paper,we review existing integration strategies ofⅢ-Ⅴmaterials and present a route towards hybrid integration of bothⅢ-Ⅴand ferroelectrics on the same chip.We show that adiabatic transformation of the optical mode between hybrid ferroelectric and silicon sections enables efficient transfer of optical modal energies for maximum overlap of the optical mode with the ferroelectric media,similar to approaches adopted to maximize optical overlap with the gain section,thereby reducing lasing thresholds for hybridⅢ-Ⅴintegration with silicon PICs.Preliminary designs are presented to enable a foundry compatible hybrid integration route of diverse functionalities on silicon PICs.
基金Project supported by the National Magnetic Confinement Fusion Program of China (Grants Nos.2019YFE03040002 and 2018YFE0301101)the Talent Project of China National Nuclear Corporation,China (Grant No.2022JZYF-01)。
文摘The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT.The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n_(bar)~(7)×10^(19)m^(-3).In this case,the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10^(5) rad/s to 10^(3) rad/s,which means that the turbulent heat transport is not dominant.While in the scenarios characterized by lower densities,such as n_(bar)~4×10^(19)m^(-3),turbulent transport becomes dominant in determining heat transport.The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10^(3) rad/s to 10^(5) rad/s.Despite the ion temperature rising,the rotation velocity does not obviously affect electron temperature or density.Additionally,it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density.
基金National Natural Science Foundation of China under Grant Nos.51639006 and 51725901
文摘Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
文摘Integrated sensing and communication(ISAC) is considered an effective technique to solve spectrum congestion in the future. In this paper, we consider a hybrid reconfigurable intelligent surface(RIS)-assisted downlink ISAC system that simultaneously serves multiple single-antenna communication users and senses multiple targets. Hybrid RIS differs from fully passive RIS in that it is composed of both active and passive elements, with the active elements having the effect of amplifying the signal in addition to phase-shifting. We maximize the achievable sum rate of communication users by collaboratively improving the beamforming matrix at the dual function base station(DFBS) and the phase-shifting matrix of the hybrid RIS, subject to the transmit power constraint at the DFBS, the signal-to-interference-plus-noise-ratio(SINR) constraint of the radar echo signal and the RIS constraint are satisfied at the same time. The builtin RIS-assisted ISAC design problem model is significantly non-convex due to the fractional objective function of this optimization problem and the coupling of the optimization variables in the objective function and constraints. As a result, we provide an effective alternating optimization approach based on fractional programming(FP) with block coordinate descent(BCD)to solve the optimization variables. Results from simulations show that the hybrid RIS-assisted ISAC system outperforms the other benchmark solutions.
基金Supported by the National High Technology Research and Development Program of China under Grant No 2015AA016902the National Natural Science Foundation of China under Grant Nos 61435013 and 61405188the K.C.Wong Education Foundation
文摘An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid integration technology. Multimode output waveguides in the silica AWG with 2% refractive index difference are used to obtain fiat-top spectra. The output waveguide facet is polished to 45° bevel to change the light propagation direction into the mesa-type PIN PD, which simplifies the packaging process. The experimentM results show that the single channel I dB bandwidth of AWG ranges from 2.12nm to 3.06nm, the ROSA responsivity ranges from 0.097 A/W to 0.158A/W, and the 3dB bandwidth is up to 11 GHz. It is promising to be applied in the eight-lane WDM transmission system in data center interconnection.
文摘This research undertakes a nuanced examination of the intersections and distinctions between these two diverse musical traditions.Employing a meticulous comparative analysis,the study scrutinizes fundamental musical elements such as scales,modes,and compositional styles,illuminating shared threads and distinctive attributes that characterize Chinese and Western music.Against the backdrop of contemporary global dynamics,the research investigates the ongoing integration of these musical cultures.It explores the impact of globalization and technological advancements,revealing instances of cross-cultural collaboration and the emergence of hybrid musical forms.Augmenting theoretical discussions with concrete case studies,the paper offers illuminating examples of how Chinese and Western musical elements interweave,contributing to the evolving landscape of global music.This research not only advances scholarly understanding but also contributes practical insights for musicians,educators,and enthusiasts navigating the evolving dynamics of cross-cultural musical expression.By elucidating the intricate relationship between Chinese and Western music cultures,the paper underscores the richness borne out of their interaction and the cultural synthesis that defines contemporary musical landscapes.
文摘Hybrid simulation is a powerful test method for evaluating the seismic performance of structural systems. This method makes it feasible that only critical components of a structure be experimentally tested. This paper presents a newly proposed integration algorithm for seismic hybrid simulation which is aimed to extend its capabilities to a wide range of systems where existing methods encounter some limitations. In the proposed method, which is termed the variable time step (VTS) integration method, an implicit scheme is employed for hybrid simulation by eliminating the iterative phase on experimental element, the phase which is necessary in regular implicit applications. In order to study the effectiveness of the VTS method, a series of numerical investigations are conducted which show the successfulness of the VTS method in obtaining accurate, stable and converged responses. Then, in a comparative approach, the improved accuracy of the VTS method over commonly used integration methods is demonstrated. The stability of the VTS method is also studied and the results show that it provides conditional stability; however, its stability limit is well beyond the accuracy limit. The effect of time delay on the VTS method results is also investigated and it is shown that the VTS method is quite successful in handling this experimental error.
基金The project supported by National Natural Science Foundation of China (NSFC)
文摘Flow birefringent method and its data processing was reviewed and a new hybrid method of flow birefringence and boundary integration was introduced. The basic equations and boundary conditions suitable to the hybrid method were derived, and a comparison of the hybrid and other classical methods was given. Finally as an example, the flow in a step converging tube was analyzed by the given method.
基金the National Natural Science Foundation of China(No.60273048).
文摘Precise integration methods to solve structural dynamic responses and the corresponding time integration formula are composed of two parts: the multiplication of an exponential matrix with a vector and the integration term. The second term can be solved by the series solution. Two hybrid granularity parallel algorithms are designed, that is, the exponential matrix and the first term are computed by the fine-grained parallel algorithra and the second term is computed by the coarse-grained parallel algorithm. Numerical examples show that these two hybrid granularity parallel algorithms obtain higher speedup and parallel efficiency than two existing parallel algorithms.
基金supported by the National Basic Research Program of China(Nos.2016YFA0203500,2017YFF0206103)the National Natural Science Foundation of China(Nos91850103,11674014,61475005,11525414,1152790111134001)the Beijing Natural Science Foundation(No Z180015)
文摘Colloidal quantum dots (CQDs) are semiconductor nanocrystalswith diameters about 2 to 20 nm. At such nanoscales,the CQDs exhibit obvious quantum and dielectric confinementeffects[1]. The CQDs are usually composed of II–VI, III–V,and IV–VI semiconductors fabricated by the low-cost wet chemicalsynthetic methods. The emission wavelengths of CQDs,which can be easily tuned by the sizes, shapes, and compositions,have already covered the whole range of the visible andnear-infrared (NIR) spectra (from 440 to 1530 nm). Owing tothe low-cost fabrications, high quantum yields (QYs^100%), tunableemission wavelengths, and outstanding stability, the solution-processable CQDs can act as the nanoscale buildingblocks with large gains, and they have attracted enormous attentionin the lasing applications in the past decade.
基金This work was supported by National Key Research and Development Program of China(2018YFB2201101)the Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDB43000000Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park No.Z201100004020004。
文摘In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fiber was used to adjust the rotation of the polarization direction caused by the optical isolator.The whole optical path structure,including the laser chip,lens,fiber,and modulator chip,was simulated to achieve high optical output efficiency.After a series of process improvements,a module with an output extinction ratio of 34 dB and a bandwidth of 20.5 GHz(from 2 GHz)was obtained.The optical output efficiency of the whole module reached approximately 21%.The link performance of the module was also measured.
基金Supported by the Aeronautical Science Foundation of China(2010ZB52011)the Funding of Jiangsu Innovation Program for Graduate Education(CXLX11-0213)the Nanjing University of Aeronautics and Astronautics Research Funding(NS2010055)~~
文摘The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization.
文摘Aim: To study the integration of hepatitis B virus (HBV) DNA into sperm chromosomes in hepatitis B patients and the features of its integration. Methods: Sperm chromosomes of 14 subjects (5 healthy controls and 9 HB patients, including 1 acute hepatitis B, 2 chronic active hepatitis B, 4 chronic persistent hepatitis B, 2 HBsAg chronic carriers with no clinical symptoms) were prepared using interspecific in vitro fertilization between zona-free hamster oocytes and human spermatozoa. Fluorescence in situ hybridization (FISH) to sperm chromosome spreads was carried out with biotin-labeled full length HBV DNA probe to detect the specific HBV DNA sequences in the sperm chromosomes. Results: Specific fluorescent signal spots for HBV DNA were seen in sperm chromosomes of one patient with chronic persistent hepatitis B. In 9(9/42) sperm chromosome complements containing fluorescent signal spots, one presented 5 obvious FISH spots and the others 2 to 4 signals. The fluorescence intensity showed significant difference among the signal spots. The distribution of signal sites among chromosomes seems to be random. Conclusion: HBV could integrate into human sperm chromosomes. Results suggest that the possibility of vertical transmission of HBV via the germ line to the next generation is present.
基金the support of National Natural Science Foundation of China (Nos. 51702284 and 21878270)Zhejiang Provincial Natural Science Foundation of China (LR19B060002)+5 种基金the Startup Foundation for Hundred-Talent Program of Zhejiang University(112100-193820101/001/022)the support of Shenzhen Science and Technology Project of China (JCYJ20170412105400428)the support of Zhejiang Provincial Natural Science Foundation of China (LR16F040001)Open Project of Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Universitythe support of Innovation Platform of Energy Storage Engineering and New Material in Zhejiang University (K19-534202-002)Provincial Innovation Team on Hydrogen Electric Hybrid Power Systems in Zhejiang Province
文摘An integrated system has been provided with a-Si/H solar cells as energy conversion device,NiCo2O4 battery-supercapacitor hybrid(BSH)as energy storage device,and light emitting diodes(LEDs)as energy utilization device.By designing three-dimensional hierarchical NiCo2O4 arrays as faradic electrode,with capacitive electrode of active carbon(AC),BSHs were assembled with energy density of 16.6 Wh kg-1,power density of 7285 W kg-1,long-term stability with 100% retention after 15,000 cycles,and rather low self-discharge.The NiCo2O4//AC BSH was charged to 1.6 V in 1 s by solar cells and acted as reliable sources for powering LEDs.The integrated system is rational for operation,having an overall efficiency of 8.1% with storage efficiency of 74.24%.The integrated system demonstrates a stable solar power conversion,outstanding energy storage behavior,and reliable light emitting.Our study offers a precious strategy to design a self-driven integrated system for highly efficient energy utilization.
基金supported by the National Hi-Tech Research and Development Program(863)of China(No.2006AA09Z178,2001AA635090)the National Nat-ural Science Foundation of China(No.40706044)
文摘Phaeocystis globosa Scherffel is one of the common harmful algae species in coastal waters of the southeastern China.In this study,sandwich hybridization integrated with nuclease protection assay(NPA-SH)was used to qualitatively and quantitatively detect P. globosa.Results showed that this method had good applicability and validity in analyzing the samples from laboratory cultures and from fields.The linear regression equation for P.globosa was obtained,and the lowest detection number of cells was 1.8×104 c...
文摘In this paper, we discuss the existence of solutions for a nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Our main result is based on a hybrid fixed point theorem for a sum of three operators due to Dhage, and is well illustrated with the aid of an example.
基金funded by the Project “Resource Characteristics of Main Watersheds and Key Issues in Development and Utilization of Hydroelectricity in South America and Africa”the National Science Foundation of China (U1766201)
文摘The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode of the two can better meet the needs of the electric power system. This article first presents an analysis of the necessity and superiority of such mode, then explains its meaning and analyzes the working routes. Finally, it proposes the business modes as follows: low price pumping water electricity plus nuclear power in the near term;nuclear power shifted to pumped storage power participating in market competition in the middle term;and, in the long term, nuclear power shifted to pumped storage power as primary and serving as an electric power system when needed.