期刊文献+
共找到160篇文章
< 1 2 8 >
每页显示 20 50 100
Ti-Reader:基于注意力机制的藏文机器阅读理解端到端网络模型
1
作者 孙媛 陈超凡 +1 位作者 刘思思 赵小兵 《中文信息学报》 CSCD 北大核心 2024年第2期61-69,共9页
机器阅读理解旨在教会机器去理解一篇文章并且回答与之相关的问题。为了解决低资源语言上机器阅读理解模型性能低的问题,该文提出了一种基于注意力机制的藏文机器阅读理解端到端网络模型Ti-Reader。首先,为了编码更细粒度的藏文文本信息... 机器阅读理解旨在教会机器去理解一篇文章并且回答与之相关的问题。为了解决低资源语言上机器阅读理解模型性能低的问题,该文提出了一种基于注意力机制的藏文机器阅读理解端到端网络模型Ti-Reader。首先,为了编码更细粒度的藏文文本信息,将音节和词相结合进行词表示,然后采用词级注意力机制去关注文本中的关键词,利用重读机制去捕捉文章和问题之间的语义信息,自注意力机制去匹配问题与答案的隐变量本身,为答案预测提供更多的线索。最后,实验结果表明,Ti-Reader模型提升了藏文机器阅读理解的性能,同时在英文数据集SQuAD上也有较好的表现。 展开更多
关键词 机器阅读理解 注意力机制 端到端网络 藏文
下载PDF
Knowledge Graph based Mutual Attention for Machine Reading Comprehension over Anti-Terrorism Corpus 被引量:1
2
作者 Feng Gao Jin Hou +1 位作者 Jinguang Gu Lihua Zhang 《Data Intelligence》 EI 2023年第3期685-706,共22页
Machine reading comprehension has been a research focus in natural language processing and intelligence engineering.However,there is a lack of models and datasets for the MRC tasks in the anti-terrorism domain.Moreove... Machine reading comprehension has been a research focus in natural language processing and intelligence engineering.However,there is a lack of models and datasets for the MRC tasks in the anti-terrorism domain.Moreover,current research lacks the ability to embed accurate background knowledge and provide precise answers.To address these two problems,this paper first builds a text corpus and testbed that focuses on the anti-terrorism domain in a semi-automatic manner.Then,it proposes a knowledge-based machine reading comprehension model that fuses domain-related triples from a large-scale encyclopedic knowledge base to enhance the semantics of the text.To eliminate knowledge noise that could lead to semantic deviation,this paper uses a mixed mutual ttention mechanism among questions,passages,and knowledge triples to select the most relevant triples before embedding their semantics into the sentences.Experiment results indicate that the proposed approach can achieve a 70.70%EM value and an 87.91%F1 score,with a 4.23%and 3.35%improvement over existing methods,respectively. 展开更多
关键词 machine reading comprehension Anti-terrorism domain Knowledge embedding Knowledge attention Mutual attention
原文传递
GraphFlow+:Exploiting Conversation Flow in Conversational Machine Comprehension with Graph Neural Networks
3
作者 Jing Hu Lingfei Wu +2 位作者 Yu Chen Po Hu Mohammed J.Zaki 《Machine Intelligence Research》 EI CSCD 2024年第2期272-282,共11页
The conversation machine comprehension(MC)task aims to answer questions in the multi-turn conversation for a single passage.However,recent approaches don’t exploit information from historical conversations effectivel... The conversation machine comprehension(MC)task aims to answer questions in the multi-turn conversation for a single passage.However,recent approaches don’t exploit information from historical conversations effectively,which results in some references and ellipsis in the current question cannot be recognized.In addition,these methods do not consider the rich semantic relationships between words when reasoning about the passage text.In this paper,we propose a novel model GraphFlow+,which constructs a context graph for each conversation turn and uses a unique recurrent graph neural network(GNN)to model the temporal dependencies between the context graphs of each turn.Specifically,we exploit three different ways to construct text graphs,including the dynamic graph,static graph,and hybrid graph that combines the two.Our experiments on CoQA,QuAC and DoQA show that the GraphFlow+model can outperform the state-of-the-art approaches. 展开更多
关键词 Conversational machine comprehension(MC) reading comprehension question answering graph neural networks(GNNs) natural language processing(NLP)
原文传递
Hybrid embedding and joint training of stacked encoder for opinion question machine reading comprehension 被引量:1
4
作者 Xiang-zhou HUANG Si-liang TANG +1 位作者 Yin ZHANG Bao-gang WEI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第9期1346-1355,共10页
Opinion question machine reading comprehension(MRC)requires a machine to answer questions by analyzing corresponding passages.Compared with traditional MRC tasks where the answer to every question is a segment of text... Opinion question machine reading comprehension(MRC)requires a machine to answer questions by analyzing corresponding passages.Compared with traditional MRC tasks where the answer to every question is a segment of text in corresponding passages,opinion question MRC is more challenging because the answer to an opinion question may not appear in corresponding passages but needs to be deduced from multiple sentences.In this study,a novel framework based on neural networks is proposed to address such problems,in which a new hybrid embedding training method combining text features is used.Furthermore,extra attention and output layers which generate auxiliary losses are introduced to jointly train the stacked recurrent neural networks.To deal with imbalance of the dataset,irrelevancy of question and passage is used for data augmentation.Experimental results show that the proposed method achieves state-of-the-art performance.We are the biweekly champion in the opinion question MRC task in Artificial Intelligence Challenger 2018(AIC2018). 展开更多
关键词 machine reading comprehension Neural networks Joint training Data augmentation
原文传递
面向机器阅读理解的高质量藏语数据集构建 被引量:1
5
作者 孙媛 刘思思 +2 位作者 陈超凡 旦正错 赵小兵 《中文信息学报》 CSCD 北大核心 2024年第3期56-64,共9页
机器阅读理解是通过算法让机器根据给定的上下文回答问题,从而测试机器理解自然语言的程度。其中,数据集的构建是机器阅读理解的主要任务之一。目前,相关算法模型在大多数流行的英语数据集上都取得了显著的成绩,甚至超过了人类表现。但... 机器阅读理解是通过算法让机器根据给定的上下文回答问题,从而测试机器理解自然语言的程度。其中,数据集的构建是机器阅读理解的主要任务之一。目前,相关算法模型在大多数流行的英语数据集上都取得了显著的成绩,甚至超过了人类表现。但对于低资源语言,由于缺乏相应的数据集,机器阅读理解研究尚处于起步阶段。该文以藏语为例,人工构建了藏语机器阅读理解数据集(TibetanQA),其中包含20000个问题答案对和1513篇文章。该数据集的文章均来自云藏网,涵盖了自然、文化和教育等12个领域,问题形式多样且具有一定的难度。另外,该数据集在文章收集、问题构建、答案验证、回答多样性和推理能力等方面,均采用严格的流程以确保数据的质量,同时采用基于语言特征消融输入的验证方法说明了数据集的质量。最后,该文初步探索了三种经典的英语阅读理解模型在TibetanQA数据集上的表现,其结果难以媲美人类,这表明藏语机器阅读理解任务还需要更进一步的探索。 展开更多
关键词 机器阅读理解 低资源语言 藏语 数据集
下载PDF
面向机器阅读理解的边界感知方法
6
作者 刘青 陈艳平 +2 位作者 邹安琪 黄瑞章 秦永彬 《计算机应用》 CSCD 北大核心 2024年第7期2004-2010,共7页
针对现有的基于预训练语言模型的答案获取方法存在预测边界不够准确的问题,提出一种面向片段抽取式机器阅读理解(MRC)的边界感知方法。首先,在问题输入阶段引入特殊字符标记问题边界,通过增强问题语义信息的方式实现对问题边界的感知;其... 针对现有的基于预训练语言模型的答案获取方法存在预测边界不够准确的问题,提出一种面向片段抽取式机器阅读理解(MRC)的边界感知方法。首先,在问题输入阶段引入特殊字符标记问题边界,通过增强问题语义信息的方式实现对问题边界的感知;其次,在答案预测阶段,构建答案边界回归器,实现感知的问题边界语义信息与输出的预测答案边界语义信息的语义交互;最后,通过交互后的语义信息进一步调整存在偏差的预测答案边界,实现对预测答案的校准。实验结果表明,与SpanBERT(Span-based Bidirectional Encoder Representation from Transformers)相比,该方法在公共数据集SQuAD(Stanford Question Answering Dataset)1.1上的F1值提升了0.2个百分点、精确匹配(EM)值提升了0.9个百分点;在HotpotQA(Hotpot Question Answering)数据集上的F1值和EM值都提升了0.7个百分点;在NewsQA(News Question Answering)数据集上的F1值提升了2.8个百分点、EM值提升了3.3个百分点。可见,该方法能有效增强对问题边界信息的感知并且实现对预测答案边界的校准,有利于更好地理解和分析文本数据,在智能问答、智能客服等领域的应用中提高系统的准确性。 展开更多
关键词 机器阅读理解 问题边界感知 答案边界回归 片段抽取
下载PDF
面向小样本抽取式问答的多标签语义校准方法
7
作者 刘青 陈艳平 +2 位作者 邹安琪 秦永彬 黄瑞章 《应用科学学报》 CAS CSCD 北大核心 2024年第1期161-173,共13页
小样本抽取式问答任务旨在利用文章给定的上下文片段,抽取出真实的答案片段。其基线模型采用的方法只针对跨度进行学习,缺乏对全局语义信息的利用,在含有多组不同重复跨度的实例中存在着理解偏差等问题。为了解决上述问题,该文利用不同... 小样本抽取式问答任务旨在利用文章给定的上下文片段,抽取出真实的答案片段。其基线模型采用的方法只针对跨度进行学习,缺乏对全局语义信息的利用,在含有多组不同重复跨度的实例中存在着理解偏差等问题。为了解决上述问题,该文利用不同层级的语义提出了一种面向小样本抽取式问答任务的多标签语义校准方法。采用包含全局语义信息的头标签和基线模型中的特殊字符构成多标签进行语义融合,并利用语义融合门来控制全局信息流的引入,将全局语义信息融合到特殊字符的语义信息中。然后,利用语义筛选门对新融入的全局语义信息和该特殊字符的原有语义信息进行保留与更替,实现对标签偏差语义的校准。在8个小样本抽取式问答数据集中的56组实验结果表明:该方法在评价指标F1值上均明显优于基线模型,证明了所提方法的有效性和先进性。 展开更多
关键词 小样本抽取式问答 跨度抽取式问答 多标签语义融合 双门控机制 机器阅读理解
下载PDF
面向矿山机电设备监测文本的命名实体识别
8
作者 邱云飞 邢浩然 +1 位作者 于智龙 张文文 《计算机工程与应用》 CSCD 北大核心 2024年第11期129-138,共10页
正确抽取矿山机电设备监测文本中的设备名称、参数标准、故障位置、故障类型等实体,可以辅助专家尽早发现异常机电设备、提升分析设备故障的效率和精度。针对矿山机电设备领域实体多为嵌套实体,且具备字符较长、上下文关联性较强等特点... 正确抽取矿山机电设备监测文本中的设备名称、参数标准、故障位置、故障类型等实体,可以辅助专家尽早发现异常机电设备、提升分析设备故障的效率和精度。针对矿山机电设备领域实体多为嵌套实体,且具备字符较长、上下文关联性较强等特点,提出一种联合多粒度特征的实体识别方法,通过机器阅读理解框架初步确定长序列嵌套实体边界,采用融合注意力机制的BiLSTM神经网络深挖实体间上下文关联。实验结果表明,该方法对矿山机电设备监测文本中的实体具备较好的识别效果,并且提升了其他低资源场景下命名实体识别任务的效果。 展开更多
关键词 矿山机电设备 命名实体识别 多粒度信息 机器阅读理解
下载PDF
外部注意力增强语义交互的阅读理解模型
9
作者 吴迪 马超 段晓旋 《计算机工程与设计》 北大核心 2024年第7期2097-2103,共7页
针对传统抽取式阅读理解模型未充分考虑问答样本之间潜在相关性的问题,通过RoBERTa对问题与段落进行编码,利用外部注意力Exatt增强语义交互层特征获取能力,提出外部注意力增强语义交互的阅读理解模型,捕获问题与段落中蕴涵的语义特征和... 针对传统抽取式阅读理解模型未充分考虑问答样本之间潜在相关性的问题,通过RoBERTa对问题与段落进行编码,利用外部注意力Exatt增强语义交互层特征获取能力,提出外部注意力增强语义交互的阅读理解模型,捕获问题与段落中蕴涵的语义特征和不同问答样本之间的潜在相关性。实验结果表明,在CMRC2018和构建的电力安规问答数据集上,在评价指标EM和F1两方面,该方法较基线模型分别最高提高了0.737%和2.556%。 展开更多
关键词 电力安规 抽取式机器阅读理解 预训练模型 问答样本 潜在相关性 外部注意力 语义交互
下载PDF
面向抽取式阅读理解的数据增强研究
10
作者 胡新荣 徐伟 +4 位作者 罗瑞奇 刘军平 朱强 杨捷 李立军 《软件导刊》 2024年第6期32-37,共6页
在抽取式阅读理解中,语言模型在训练数据较少情况下的表现不佳,使用EDA方法虽能有效增加数据量,但会造成数据中语义信息损失,导致模型训练效果不佳。针对上述问题,结合EDA提出面向少样本情况下抽取式阅读理解的数据增强方法,在保留数据... 在抽取式阅读理解中,语言模型在训练数据较少情况下的表现不佳,使用EDA方法虽能有效增加数据量,但会造成数据中语义信息损失,导致模型训练效果不佳。针对上述问题,结合EDA提出面向少样本情况下抽取式阅读理解的数据增强方法,在保留数据中问题正确答案的前提下对数据进行单词级和句子级数据增强。同时,为了对句子语义影响最小的单词进行数据增强,使用基于语义相似度的数据增强方法(DASS)计算句子中某一个单词删除前后的语义相似度,以判断该单词对句子语义的影响,选择对语义影响最小的单词进行数据增强,提升训练数据质量,以提升语言模型鲁棒性。在HotpotQA数据集上的实验结果表明,DASS可以解决模型在样本数量较少时获取语义信息不足的问题,在样本数量为500时,模型预测的F1值提升23.94%,在对整个数据集使用该方法时,模型预测的F1值提升了2.54%。 展开更多
关键词 抽取式阅读理解 EDA 数据增强 语义相似度 机器阅读理解
下载PDF
基于多尺度卷积的阅读理解候选句抽取
11
作者 李沫谦 杨陟卓 +2 位作者 李茹 王笑月 吉宇 《中文信息学报》 CSCD 北大核心 2024年第8期128-139,157,共13页
机器阅读理解作为检验机器是否具有理解人类自然语言能力的重要任务之一,受到了越来越广泛的关注。该文针对选择型阅读理解任务中特征提取不全面和交互不充分的问题,提出一种基于多尺度卷积的候选句抽取模型。首先,使用预训练模型编码... 机器阅读理解作为检验机器是否具有理解人类自然语言能力的重要任务之一,受到了越来越广泛的关注。该文针对选择型阅读理解任务中特征提取不全面和交互不充分的问题,提出一种基于多尺度卷积的候选句抽取模型。首先,使用预训练模型编码句子语义信息,并利用多种特征辅助编码提升模型性能。其次,为了充分利用文本信息,采用多尺度卷积捕捉不同尺度的文本特征。再次,使用Focal Loss解决阅读理解中正负样本不均衡的问题,最后,选取top-20作为候选句。该文的方法在两个阅读理解选择题数据集上进行测试,实验结果表明,多尺度卷积模型效果优于基线模型,F1值较最优基线模型结果分别提升3.66%和4.82%,验证了方法的有效性。 展开更多
关键词 机器阅读理解 候选句抽取 多尺度卷积
下载PDF
基于MRC的设备故障命名实体识别方法
12
作者 徐鹏 龚伟 宋俊典 《计算机应用与软件》 北大核心 2024年第5期171-176,273,共7页
命名实体识别是一种有效的设备运行日志分析方法,不仅提高了故障检测的准确度,而且为智能运维策略的优化提供了强有力的支持。鉴于设备运行日志的专业性和复杂性,提出一种基于机器阅读理解的设备故障命名实体识别方法,该方法通过将特定... 命名实体识别是一种有效的设备运行日志分析方法,不仅提高了故障检测的准确度,而且为智能运维策略的优化提供了强有力的支持。鉴于设备运行日志的专业性和复杂性,提出一种基于机器阅读理解的设备故障命名实体识别方法,该方法通过将特定的实体类别转化为自然语言查询,并将实体类别信息融合到这些查询中,有效地克服了传统方法在标签语义信息上的不足,并在实体边界定位的准确性上取得了显著提升。实验表明该方法在设备故障命名实体识别的准确性和有效性方面明显优于现有的基线方法。 展开更多
关键词 机器阅读理解 命名实体识别 设备故障
下载PDF
基于关系增强图卷积网络的机器阅读理解式事件检测
13
作者 纪婉婷 鲁闻一 +3 位作者 马宇航 丁琳琳 宋宝燕 张浩林 《计算机应用》 CSCD 北大核心 2024年第10期3288-3293,共6页
在面对具有复杂句法关系的长文本上下文时,现有机器阅读理解式事件检测模型难以挖掘关键词之间长距离依赖关系。针对上述问题,提出一种基于关系增强图卷积网络(REGCN)的机器阅读理解式事件检测模型(MRCREGCN)。首先,利用预训练语言模型... 在面对具有复杂句法关系的长文本上下文时,现有机器阅读理解式事件检测模型难以挖掘关键词之间长距离依赖关系。针对上述问题,提出一种基于关系增强图卷积网络(REGCN)的机器阅读理解式事件检测模型(MRCREGCN)。首先,利用预训练语言模型对问题和文本进行联合编码,得到融入先验信息的单词向量表示;其次,引入动态的关系增强标签信息,并利用REGCN深入学习单词之间的句法依存关系,增强模型对长文本句法结构的感知能力;最后,利用多分类器得到文本单词在所有事件类型下的概率分布。在ACE2005英文语料上的实验结果表明,所提模型在触发词分类上的F1分值相较于同类机器阅读理解模型EEQA(Event Extraction by Answering(almost)natural Questions)和最佳基线模型DEGREE(Data-Efficient GeneRation-based Event Extraction)分别提升了2.49%和1.23%,验证了MRC-REGCN具有更好的事件检测性能。 展开更多
关键词 机器阅读理解 事件检测 图卷积网络 句法依存关系 触发词分类
下载PDF
神经机器阅读模型综述
14
作者 骆丹 张鹏 +2 位作者 马路 王斌 王丽宏 《信息安全学报》 CSCD 2024年第2期122-139,共18页
近年来,随着互联网的高速发展,网络内容安全问题日益突出,是网络治理的核心任务之一。文本内容是网络内容安全最为关键的研究对象,然而自然语言本身固有的模糊性和灵活性给网络舆情监控和网络内容治理带来了很大的困难。因此,如何准确... 近年来,随着互联网的高速发展,网络内容安全问题日益突出,是网络治理的核心任务之一。文本内容是网络内容安全最为关键的研究对象,然而自然语言本身固有的模糊性和灵活性给网络舆情监控和网络内容治理带来了很大的困难。因此,如何准确地理解文本内容,是网络内容治理的关键问题。目前,文本内容理解的核心支撑技术是基于自然语言处理的方法。机器阅读理解作为自然语言处理领域中的一项综合性任务,可以深层次地分析、全面地理解网络内容,在网络舆论监测和网络内容治理上发挥着重要作用。近年来,深度学习技术已在图像识别、文本分类、自然语言处理等多个领域中取得显著成果,基于深度学习的机器阅读理解方法也被广泛研究。特别是近年来各种大规模数据集的公开,加快了神经机器阅读理解的发展,各种结合不同神经网络的机器阅读模型被相继提出。本文旨在对神经机器阅读模型进行综述。首先介绍机器阅读理解的发展历史和研究现状;然后阐述机器阅读理解的任务定义,并列举出有代表性的数据集以及神经机器阅读模型;再介绍四种新趋势目前的研究进展;最后提出神经机器阅读模型当前存在的问题,并且分析机器阅读理解如何应用于网络内容治理问题以及对未来的发展趋势进行展望。 展开更多
关键词 网络内容安全 网络舆情监测 机器阅读理解 自然语言处理 深度学习 神经网络
下载PDF
基于MacBERT与对抗训练的机器阅读理解模型
15
作者 周昭辰 方清茂 +2 位作者 吴晓红 胡平 何小海 《计算机工程》 CAS CSCD 北大核心 2024年第5期41-50,共10页
机器阅读理解旨在让机器像人类一样理解自然语言文本,并据此进行问答任务。近年来,随着深度学习和大规模数据集的发展,机器阅读理解引起了广泛关注,但是在实际应用中输入的问题通常包含各种噪声和干扰,这些噪声和干扰会影响模型的预测... 机器阅读理解旨在让机器像人类一样理解自然语言文本,并据此进行问答任务。近年来,随着深度学习和大规模数据集的发展,机器阅读理解引起了广泛关注,但是在实际应用中输入的问题通常包含各种噪声和干扰,这些噪声和干扰会影响模型的预测结果。为了提高模型的泛化能力和鲁棒性,提出一种基于掩码校正的来自Transformer的双向编码器表示(Mac BERT)与对抗训练(AT)的机器阅读理解模型。首先利用Mac BERT对输入的问题和文本进行词嵌入转化为向量表示;然后根据原始样本反向传播的梯度变化在原始词向量上添加微小扰动生成对抗样本;最后将原始样本和对抗样本输入双向长短期记忆(Bi LSTM)网络进一步提取文本的上下文特征,输出预测答案。实验结果表明,该模型在简体中文数据集CMRC2018上的F1值和精准匹配(EM)值分别较基线模型提高了1.39和3.85个百分点,在繁体中文数据集DRCD上的F1值和EM值分别较基线模型提高了1.22和1.71个百分点,在英文数据集SQu ADv1.1上的F1值和EM值分别较基线模型提高了2.86和1.85个百分点,优于已有的大部分机器阅读理解模型,并且在真实问答结果上与基线模型进行对比,结果验证了该模型具有更强的鲁棒性和泛化能力,在输入的问题存在噪声的情况下性能更好。 展开更多
关键词 机器阅读理解 对抗训练 预训练模型 掩码校正的来自Transformer的双向编码器表示 双向长短期记忆网络
下载PDF
基于阅读技巧识别和双通道融合机制的机器阅读理解方法
16
作者 彭伟 胡玥 +2 位作者 李运鹏 谢玉强 牛晨旭 《自动化学报》 EI CAS CSCD 北大核心 2024年第5期958-969,共12页
机器阅读理解任务旨在要求系统对给定文章进行理解,然后对给定问题进行回答.先前的工作重点聚焦在问题和文章间的交互信息,忽略了对问题进行更加细粒度的分析(如问题所考察的阅读技巧是什么?).受先前研究的启发,人类对于问题的理解是一... 机器阅读理解任务旨在要求系统对给定文章进行理解,然后对给定问题进行回答.先前的工作重点聚焦在问题和文章间的交互信息,忽略了对问题进行更加细粒度的分析(如问题所考察的阅读技巧是什么?).受先前研究的启发,人类对于问题的理解是一个多维度的过程.首先,人类需要理解问题的上下文信息;然后,针对不同类型问题,识别其需要使用的阅读技巧;最后,通过与文章交互回答出问题答案.针对这些问题,提出一种基于阅读技巧识别和双通道融合的机器阅读理解方法,对问题进行更加细致的分析,从而提高模型回答问题的准确性.阅读技巧识别器通过对比学习的方法,能够显式地捕获阅读技巧的语义信息.双通道融合机制将问题与文章的交互信息和阅读技巧的语义信息进行深层次的融合,从而达到辅助系统理解问题和文章的目的.为了验证该模型的效果,在FairytaleQA数据集上进行实验,实验结果表明,该方法实现了在机器阅读理解任务和阅读技巧识别任务上的最好效果. 展开更多
关键词 机器阅读理解 阅读技巧识别 对比学习 双通道融合机制
下载PDF
基于话头话体共享结构信息的机器阅读理解研究
17
作者 韩玉蛟 罗智勇 +2 位作者 张明明 赵志琳 张青 《中文信息学报》 CSCD 北大核心 2024年第5期32-40,共9页
机器阅读理解(Machine Reading Comprehension,MRC)任务旨在让机器回答给定上下文的问题来测试机器理解自然语言的能力。目前,基于大规模预训练语言模型的神经机器阅读理解模型已经取得重要进展,但在涉及答案要素、线索要素和问题要素... 机器阅读理解(Machine Reading Comprehension,MRC)任务旨在让机器回答给定上下文的问题来测试机器理解自然语言的能力。目前,基于大规模预训练语言模型的神经机器阅读理解模型已经取得重要进展,但在涉及答案要素、线索要素和问题要素跨标点句、远距离关联时,答案抽取的准确率还有待提升。该文通过篇章内话头话体结构分析,建立标点句间远距离关联关系,补全共享缺失成分,辅助机器阅读理解答案抽取;设计和实现融合话头话体结构信息的机器阅读理解模型,在公开数据集CMRC2018上的实验结果表明,模型的F 1值相对于基线模型提升2.4%,EM值提升6%。 展开更多
关键词 机器阅读理解 话头话体结构分析 注意力机制 预训练语言模型
下载PDF
基于小句复合体的中文机器阅读理解研究
18
作者 王瑞琦 罗智勇 +2 位作者 刘祥 韩瑞昉 李舒馨 《中文信息学报》 CSCD 北大核心 2024年第3期130-140,共11页
机器阅读理解任务要求机器根据篇章文本回答相关问题。该文以抽取式机器阅读理解为例,重点考察当问题的线索要素与答案在篇章文本中跨越多个标点句时的阅读理解问题。该文将小句复合体结构自动分析任务与机器阅读理解任务融合,利用小句... 机器阅读理解任务要求机器根据篇章文本回答相关问题。该文以抽取式机器阅读理解为例,重点考察当问题的线索要素与答案在篇章文本中跨越多个标点句时的阅读理解问题。该文将小句复合体结构自动分析任务与机器阅读理解任务融合,利用小句复合体中跨标点句话头-话体共享关系,来降低机器阅读理解任务的难度;并设计与实现了基于小句复合体的机器阅读理解模型。实验结果表明,在问题线索要素与答案跨越多个标点句时,答案抽取的精确匹配率(EM)相对于基准模型提升了3.49%,模型整体的精确匹配率提升了3.26%。 展开更多
关键词 机器阅读理解 跨标点句问答 小句复合体
下载PDF
面向机器阅读理解的医学域数据集MedicalQA
19
作者 马宁 吕文蓉 郭泽晨 《中国科学数据(中英文网络版)》 CSCD 2024年第1期356-365,共10页
机器阅读理解旨在利用算法让计算机理解段落语义并回答用户提出的问题,该任务所用数据集的质量可直接影响模型的实验结果。为丰富机器阅读理解的医学领域数据集,本文以爬虫和人工标注的方式构建了面向机器阅读理解的医学域数据集Medica... 机器阅读理解旨在利用算法让计算机理解段落语义并回答用户提出的问题,该任务所用数据集的质量可直接影响模型的实验结果。为丰富机器阅读理解的医学领域数据集,本文以爬虫和人工标注的方式构建了面向机器阅读理解的医学域数据集MedicalQA。本数据集以寻医问药网和39健康网两大医疗平台为主要数据来源,包含19502个段落、问题和答案,内容涉及内科、外科、妇产科等9大科室。数据集形式为excel文件,由5列组成,第一列为段落ID,第二列为段落所属科室,第三列为段落内容,第四列为问题,第五列为问题对应答案。本数据集的构建,有利于机器阅读理解模型的鲁棒性研究以及医学问答系统的构建,也能促进机器阅读理解领域的医学数据集共享。 展开更多
关键词 机器阅读理解 医学域 数据集
下载PDF
基于大语言模型的命名实体识别
20
作者 叶名玮 汤嘉 +1 位作者 郭燕 吴桂兴 《计算机系统应用》 2024年第8期257-263,共7页
虽然以ChatGPT为代表的自然语言生成(NLG)大语言模型在自然语言处理中的大多数任务中取得了良好的表现,但其在序列识别任务,如命名实体识别任务中的表现暂且不如基于BERT的深度学习模型.针对这一点,本文探究性的通过将现有的中文命名实... 虽然以ChatGPT为代表的自然语言生成(NLG)大语言模型在自然语言处理中的大多数任务中取得了良好的表现,但其在序列识别任务,如命名实体识别任务中的表现暂且不如基于BERT的深度学习模型.针对这一点,本文探究性的通过将现有的中文命名实体识别问题改造成机器阅读理解问题,提出并设计了基于情境学习和模型微调的新方法,使NLG语言模型在识别命名实体达到了更好的效果,并且该方法不同于其他方法需要改变基层模型的预训练参数.同时,由于命名实体是模型生成的结果而不是对原始数据的分类,不存在边界问题.为了验证新框架在命名实体识别任务上的有效性,本文在多个中文命名实体识别数据集上进行了实验.其中,在Resume和Weibo数据集上的F1分数分别达到了96.04%和67.87%,相较于SOTA模型分别提高了0.4和2.7个百分点,从而验证了新框架能有效利用NLG语言模型在文本生成上的优势完成命名实体识别任务. 展开更多
关键词 命名实体识别 模型微调 机器阅读理解 情境学习 大语言模型
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部