The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the buildi...The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the building to collapse.Many small changes caused the tower’s collapse,but the early staff often could not intuitively notice the changes in the tower’s state.In the current tower online monitoring system,terminal equipment often needs to replace batteries frequently due to premature exhaustion of power.According to the need for real-time measurement of power line tower,this research designed a real-time monitoring device monitoring the transmission tower attitude tilting and foundation state based on the inertial sensor,the acceleration of 3 axis inertial sensor and angular velocity raw data to pole average filtering pre-processing,and then through the complementary filtering algorithm for comprehensive calculation of tilt angle,the system meets the demand for inclined online monitoring of power line poles and towers regarding measurement accuracy,with low cost and power consumption.The optimization multi-sensor cooperative detection and correction measured tilt angle result relative accuracy can reach 1.03%,which has specific promotion and application value since the system has the advantages of unattended and efficient calculation.展开更多
After the construction of Qinghai-Tibet Highway and Railway, the Qinghai-Tibet Power Transmission(QTPT) line is another major permafrost engineering project with new types of engineering structures. The changing proce...After the construction of Qinghai-Tibet Highway and Railway, the Qinghai-Tibet Power Transmission(QTPT) line is another major permafrost engineering project with new types of engineering structures. The changing process and trend of ground temperature around tower foundations are crucial for the stability of QTPT. We analyzed the change characteristics and tendencies of the ground temperature based on field monitoring data from 2010 to 2014. The results reveal that soil around the tower foundations froze and connected with the artificial permafrost induced during the construction of footings after the first freezing period, and the soil below the original permafrost table kept freezing in subsequent thawing periods. The ground temperature lowered to that of natural fields, fast or slowly for tower foundations with thermosyphons,while for tower foundations without thermosyphons, the increase in ground temperature resulted in higher temperature than that of natural fields. Also, the permafrost temperature and ice content are significant factors that influence the ground temperature around tower foundations. Specifically, the ground temperature around tower foundations in warm and ice-rich permafrost regions decreased slowly, while that in cold and ice poor permafrost regions cooled faster. Moreover, foundations types impacted the ground temperature, which consisted of different technical processes during construction and variant of tower footing structures. The revealed changing process and trend of the ground temperature is beneficial for evaluating the thermal regime evolution around tower foundations in the context of climate change.展开更多
In recent years,several failures of double circuit transmission line on the same tower due to lightning were happened in Beijing power grid.Although it can be reclosed successful,the lightning strike caused a grave th...In recent years,several failures of double circuit transmission line on the same tower due to lightning were happened in Beijing power grid.Although it can be reclosed successful,the lightning strike caused a grave threat to the power grid security.The cause of the accident and the accident process were studied for the sake of further understanding of the impact of lightning on power grid.As an example,110 kV double circuit transmission line(Xilong-line) was analyzed.At first,the system topology was given.Through the analysis on relay protection actions and the fault recorder data,over voltage on the insulator strings was calculated.Based on the analysis and the calculation,accident cause and the process were presented respectively.Secondly,it comes to the conclusion that the lightning failure was caused by counterattack.The wave of the lightning over voltage would spread to the not grounded neutral point of the transformers,and make the neutral protective gap breakdown,then cause freewheeling with the frequency of 50 Hz.As results of the relay protection,the double circuit transmission line all tripped out.Finally,the causes of the accident were proposed that included terrain features,large corner towers,strong thunderstorm weather and poor grounded contact of the tower.展开更多
This paper describes the functions and the features of the integrated system of aerial survey and tower locations optimization for transmission lines, which includes all stages from data acquisition, data transmission...This paper describes the functions and the features of the integrated system of aerial survey and tower locations optimization for transmission lines, which includes all stages from data acquisition, data transmission and data processing to automatic optimization of the tower locations and drawing. The paper also briefly describes the economic benefit gained from this system, and finally proposes the directions of the future development for this system.展开更多
A macroscopic finite element modeling approach was proposed to calculate the vibration of a tower-line system subjected to broken wires with software ANSYS/LS-DYNA. In the finite element model, not only the nonlineari...A macroscopic finite element modeling approach was proposed to calculate the vibration of a tower-line system subjected to broken wires with software ANSYS/LS-DYNA. In the finite element model, not only the nonlinearity of wires and suspension insulators are considered, but also the support towers are included. The incremental and iterative approaches are combined by applying the unbalanced loads incrementally during each iteration cycle. The approach was illustrated with an example of a Hanjiang- River long-span transmission line system subjected to a shield wire and a conductor failure, respectively. The analysis results showed that the proposed dynamic simulation approach can demonstrate the kinetic process of the tower-line system subjected to wire ruptures: The frequencies of line components were lower and densely distributed, but the frequencies of tower components were higher and sparsely distributed. Anyhow, the dynamic effects of wire ruptures on tower-line system could not be ignored in analysis of tower-line system subjected wire failures.展开更多
Transmission tower-line systems are designed using static loads specified in various codes. This paper compares the dynamic response of a test transmission line with the response due to static loads given by Eurocode....Transmission tower-line systems are designed using static loads specified in various codes. This paper compares the dynamic response of a test transmission line with the response due to static loads given by Eurocode. Finite element design software SAP2000 was used to model the towers and lines. Non-linear dynamic analysis including the large displacement effects was carried out. Macroscopic aspects of wind coherence along element length and integration time step were investigated. An approach is presented to compare the probabilistic dynamic response due to 7 different stochastically simulated wind fields with the response according to EN-50341. The developed model will be used to study the response recorded on a test line due to the actual wind speed time history recorded. It was found that static load from EN overestimated the strength of conductor cables. The response of coupled system considering towers and cables was found to be different from response of only cables with fixed supports.展开更多
During ground faults on transmission lines,a number of towers near the fault are likely to acquire high potentials to ground.These tower voltages,if excessive,may present a hazard to humans and animals.This paper pres...During ground faults on transmission lines,a number of towers near the fault are likely to acquire high potentials to ground.These tower voltages,if excessive,may present a hazard to humans and animals.This paper presents analytical methods in order to determine the transmission towers potentials during ground faults,for long and short lines.The author developed a global systematic approach to calculate these voltages,which are dependent of a number of factors.Some of the most important factors are:magnitudes of fault currents,fault location with respect to the line terminals,conductor arrangement on the tower and the location of the faulted phase,the ground resistance of the faulted tower,soil resistivity,number,material and size of ground wires.The effects of these factors on the faulted tower voltages have been also examined for different types of power lines.展开更多
There is a considerable number of works devoted to electrical characteristics of grounding. These characteristics are important in general. However, in application to grounding of transmission line towers they are not...There is a considerable number of works devoted to electrical characteristics of grounding. These characteristics are important in general. However, in application to grounding of transmission line towers they are not enough to determine what grounding construction is preferable in some particular case, because these characteristics are calculated or measured apart from the grounded object, and only limited number of current (or voltage) source waveforms is used. This paper indicates reasons in favor of the fact that to choose the optimum design of grounding, the calculation model should include the tower as it is. The probability of back flashover, which provides both qualitative and quantitative estimate of the grounding structure efficiency, can be taken as the criterion for the grounding design. The insulation flashover probability is calculated on the basis of engineering method, which evaluates breakdown strength of insulation for nonstandard waveshapes, and probability data on lightning currents. Different approaches are examined for identifying the back flashover probability, as not only amplitudes but also other parameters can be taken into account. Finite-difference time-domain method is used for calculations of transients. It is found that lightning current waveform can greatly influence calculated back flashover probability value.展开更多
In order to improve the reliability of fault identification of the double-circuit transmission lines on the same tower, a new algorithm for fast protection of double-circuit transmission lines on the same tower based ...In order to improve the reliability of fault identification of the double-circuit transmission lines on the same tower, a new algorithm for fast protection of double-circuit transmission lines on the same tower based on the reactive powers of traveling wave is proposed. With the implementation of S-transform, the initial traveling wave reactive powers are calculated and the change characteristics of reactive power under different fault conditions are studied. The protection criterion is constructed by analyzing the ratio of the reactive powers of the same end on double-circuit transmission lines and the ratio of the reactive powers at both ends on the same line. According to the ratio of reactive power on the same side of the line and both ends of the same line, it is possible to identify whether the faults of the double-circuit line of the same tower occurred in or out of the protection zone. A large number of simulation results show that the protection performance is sensitive and reliable, and quick to respond. The criterion is simple and is basically not affected by fault initial angles, fault types, and transitional resistances.展开更多
With rapid growth of power demand, transmission capacity is also in urgent need of upgrading. In some cases, converting existing AC transmission lines to DC lines can Improve the transmission capacity and reduce the c...With rapid growth of power demand, transmission capacity is also in urgent need of upgrading. In some cases, converting existing AC transmission lines to DC lines can Improve the transmission capacity and reduce the construction investment. In this paper, the upstream finite element method was expanded to calculate the total electric field of same tower multi-circuit DC lines converted from double-circuit AC lines, and the validity of the algorithm was confirmed by experiments. Taking a DC line converted from a typical same tower 500 kV double-circuit AC transmission line as an example, the surface electric field and the ground total electric field in different pole conductor arrangement schemes were calculated and analyzed, and the critical height of pole conductors for DC lines in residential and non-residential area were determined. Then, the corridor width of DC and AC lines at critical height in residential and non-residential areas before and after AC-DC line transformation were compared. The results indicate that for DC lines converted from common 500 kV double-circuit AC lines, the ground total electric field can meet the requirements of corresponding standard with appropriate pole conductor arrangement schemes.展开更多
Collapses of transmission towers were often observed in previous large earthquakes such as the Chi-Chi earthquake in Taiwan and Wenchuan earthquake in Sichuan,China. These collapses were partially caused by the pullin...Collapses of transmission towers were often observed in previous large earthquakes such as the Chi-Chi earthquake in Taiwan and Wenchuan earthquake in Sichuan,China. These collapses were partially caused by the pulling forces from the transmission lines generated from out-of-phase responses of the adjacent towers owing to spatially varying earthquake ground motions. In this paper,a 3D finite element model of the transmission tower-line system is established considering the geometric nonlinearity of transmission lines. The nonlinear responses of the structural system at a canyon site are analyzed subjected to spatially varying ground motions. The spatial variations of ground motion associated with the wave passage,coherency loss,and local site effects are given. The spatially varying ground motions are simulated stochastically based on an empirical coherency loss function and a filtered Tajimi-Kanai power spectral density function. The site effect is considered by a transfer function derived from 1D wave propagation theory. Compared with structural responses calculated using the uniform ground motion and delayed excitations,numerical results indicate that seismic responses of transmission towers and power lines are amplified when considering spatially varying ground motions including site effects. Each factor of ground motion spatial variations has a significant effect on the seismic response of the structure,especially for the local site effect. Therefore,neglecting the earthquake ground motion spatial variations may lead to a substantial underestimation of the response of transmission tower-line system during strong earthquakes. Each effect of ground motion spatial variations should be incorporated in seismic analysis of the structural system.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.62172242,51901152)Industry University Cooperation Education Program of the Ministry of Education(No.2020021680113)Shanxi Scholarship Council of China.
文摘The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the building to collapse.Many small changes caused the tower’s collapse,but the early staff often could not intuitively notice the changes in the tower’s state.In the current tower online monitoring system,terminal equipment often needs to replace batteries frequently due to premature exhaustion of power.According to the need for real-time measurement of power line tower,this research designed a real-time monitoring device monitoring the transmission tower attitude tilting and foundation state based on the inertial sensor,the acceleration of 3 axis inertial sensor and angular velocity raw data to pole average filtering pre-processing,and then through the complementary filtering algorithm for comprehensive calculation of tilt angle,the system meets the demand for inclined online monitoring of power line poles and towers regarding measurement accuracy,with low cost and power consumption.The optimization multi-sensor cooperative detection and correction measured tilt angle result relative accuracy can reach 1.03%,which has specific promotion and application value since the system has the advantages of unattended and efficient calculation.
基金supported by National Natural Science Fund of China (Grant No. 41401088)State Grid Qinghai Electric Power Research Institute (SGQHDKYOSBJS201600077, SGQHDKYOSBJS 1700068)Funds of State Key Laboratory of Frozen Soil Engineering (Nos. SKLFSE-ZY-17, SKLFSEZT-32)
文摘After the construction of Qinghai-Tibet Highway and Railway, the Qinghai-Tibet Power Transmission(QTPT) line is another major permafrost engineering project with new types of engineering structures. The changing process and trend of ground temperature around tower foundations are crucial for the stability of QTPT. We analyzed the change characteristics and tendencies of the ground temperature based on field monitoring data from 2010 to 2014. The results reveal that soil around the tower foundations froze and connected with the artificial permafrost induced during the construction of footings after the first freezing period, and the soil below the original permafrost table kept freezing in subsequent thawing periods. The ground temperature lowered to that of natural fields, fast or slowly for tower foundations with thermosyphons,while for tower foundations without thermosyphons, the increase in ground temperature resulted in higher temperature than that of natural fields. Also, the permafrost temperature and ice content are significant factors that influence the ground temperature around tower foundations. Specifically, the ground temperature around tower foundations in warm and ice-rich permafrost regions decreased slowly, while that in cold and ice poor permafrost regions cooled faster. Moreover, foundations types impacted the ground temperature, which consisted of different technical processes during construction and variant of tower footing structures. The revealed changing process and trend of the ground temperature is beneficial for evaluating the thermal regime evolution around tower foundations in the context of climate change.
文摘In recent years,several failures of double circuit transmission line on the same tower due to lightning were happened in Beijing power grid.Although it can be reclosed successful,the lightning strike caused a grave threat to the power grid security.The cause of the accident and the accident process were studied for the sake of further understanding of the impact of lightning on power grid.As an example,110 kV double circuit transmission line(Xilong-line) was analyzed.At first,the system topology was given.Through the analysis on relay protection actions and the fault recorder data,over voltage on the insulator strings was calculated.Based on the analysis and the calculation,accident cause and the process were presented respectively.Secondly,it comes to the conclusion that the lightning failure was caused by counterattack.The wave of the lightning over voltage would spread to the not grounded neutral point of the transformers,and make the neutral protective gap breakdown,then cause freewheeling with the frequency of 50 Hz.As results of the relay protection,the double circuit transmission line all tripped out.Finally,the causes of the accident were proposed that included terrain features,large corner towers,strong thunderstorm weather and poor grounded contact of the tower.
文摘This paper describes the functions and the features of the integrated system of aerial survey and tower locations optimization for transmission lines, which includes all stages from data acquisition, data transmission and data processing to automatic optimization of the tower locations and drawing. The paper also briefly describes the economic benefit gained from this system, and finally proposes the directions of the future development for this system.
基金Research Fund of Chinese State Grid Company (No.SGKJ[2007]413)
文摘A macroscopic finite element modeling approach was proposed to calculate the vibration of a tower-line system subjected to broken wires with software ANSYS/LS-DYNA. In the finite element model, not only the nonlinearity of wires and suspension insulators are considered, but also the support towers are included. The incremental and iterative approaches are combined by applying the unbalanced loads incrementally during each iteration cycle. The approach was illustrated with an example of a Hanjiang- River long-span transmission line system subjected to a shield wire and a conductor failure, respectively. The analysis results showed that the proposed dynamic simulation approach can demonstrate the kinetic process of the tower-line system subjected to wire ruptures: The frequencies of line components were lower and densely distributed, but the frequencies of tower components were higher and sparsely distributed. Anyhow, the dynamic effects of wire ruptures on tower-line system could not be ignored in analysis of tower-line system subjected wire failures.
文摘Transmission tower-line systems are designed using static loads specified in various codes. This paper compares the dynamic response of a test transmission line with the response due to static loads given by Eurocode. Finite element design software SAP2000 was used to model the towers and lines. Non-linear dynamic analysis including the large displacement effects was carried out. Macroscopic aspects of wind coherence along element length and integration time step were investigated. An approach is presented to compare the probabilistic dynamic response due to 7 different stochastically simulated wind fields with the response according to EN-50341. The developed model will be used to study the response recorded on a test line due to the actual wind speed time history recorded. It was found that static load from EN overestimated the strength of conductor cables. The response of coupled system considering towers and cables was found to be different from response of only cables with fixed supports.
文摘During ground faults on transmission lines,a number of towers near the fault are likely to acquire high potentials to ground.These tower voltages,if excessive,may present a hazard to humans and animals.This paper presents analytical methods in order to determine the transmission towers potentials during ground faults,for long and short lines.The author developed a global systematic approach to calculate these voltages,which are dependent of a number of factors.Some of the most important factors are:magnitudes of fault currents,fault location with respect to the line terminals,conductor arrangement on the tower and the location of the faulted phase,the ground resistance of the faulted tower,soil resistivity,number,material and size of ground wires.The effects of these factors on the faulted tower voltages have been also examined for different types of power lines.
文摘There is a considerable number of works devoted to electrical characteristics of grounding. These characteristics are important in general. However, in application to grounding of transmission line towers they are not enough to determine what grounding construction is preferable in some particular case, because these characteristics are calculated or measured apart from the grounded object, and only limited number of current (or voltage) source waveforms is used. This paper indicates reasons in favor of the fact that to choose the optimum design of grounding, the calculation model should include the tower as it is. The probability of back flashover, which provides both qualitative and quantitative estimate of the grounding structure efficiency, can be taken as the criterion for the grounding design. The insulation flashover probability is calculated on the basis of engineering method, which evaluates breakdown strength of insulation for nonstandard waveshapes, and probability data on lightning currents. Different approaches are examined for identifying the back flashover probability, as not only amplitudes but also other parameters can be taken into account. Finite-difference time-domain method is used for calculations of transients. It is found that lightning current waveform can greatly influence calculated back flashover probability value.
文摘In order to improve the reliability of fault identification of the double-circuit transmission lines on the same tower, a new algorithm for fast protection of double-circuit transmission lines on the same tower based on the reactive powers of traveling wave is proposed. With the implementation of S-transform, the initial traveling wave reactive powers are calculated and the change characteristics of reactive power under different fault conditions are studied. The protection criterion is constructed by analyzing the ratio of the reactive powers of the same end on double-circuit transmission lines and the ratio of the reactive powers at both ends on the same line. According to the ratio of reactive power on the same side of the line and both ends of the same line, it is possible to identify whether the faults of the double-circuit line of the same tower occurred in or out of the protection zone. A large number of simulation results show that the protection performance is sensitive and reliable, and quick to respond. The criterion is simple and is basically not affected by fault initial angles, fault types, and transitional resistances.
文摘With rapid growth of power demand, transmission capacity is also in urgent need of upgrading. In some cases, converting existing AC transmission lines to DC lines can Improve the transmission capacity and reduce the construction investment. In this paper, the upstream finite element method was expanded to calculate the total electric field of same tower multi-circuit DC lines converted from double-circuit AC lines, and the validity of the algorithm was confirmed by experiments. Taking a DC line converted from a typical same tower 500 kV double-circuit AC transmission line as an example, the surface electric field and the ground total electric field in different pole conductor arrangement schemes were calculated and analyzed, and the critical height of pole conductors for DC lines in residential and non-residential area were determined. Then, the corridor width of DC and AC lines at critical height in residential and non-residential areas before and after AC-DC line transformation were compared. The results indicate that for DC lines converted from common 500 kV double-circuit AC lines, the ground total electric field can meet the requirements of corresponding standard with appropriate pole conductor arrangement schemes.
基金Project supported by the National Natural Science Foundation of China (No. 50638010)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20070141036)
文摘Collapses of transmission towers were often observed in previous large earthquakes such as the Chi-Chi earthquake in Taiwan and Wenchuan earthquake in Sichuan,China. These collapses were partially caused by the pulling forces from the transmission lines generated from out-of-phase responses of the adjacent towers owing to spatially varying earthquake ground motions. In this paper,a 3D finite element model of the transmission tower-line system is established considering the geometric nonlinearity of transmission lines. The nonlinear responses of the structural system at a canyon site are analyzed subjected to spatially varying ground motions. The spatial variations of ground motion associated with the wave passage,coherency loss,and local site effects are given. The spatially varying ground motions are simulated stochastically based on an empirical coherency loss function and a filtered Tajimi-Kanai power spectral density function. The site effect is considered by a transfer function derived from 1D wave propagation theory. Compared with structural responses calculated using the uniform ground motion and delayed excitations,numerical results indicate that seismic responses of transmission towers and power lines are amplified when considering spatially varying ground motions including site effects. Each factor of ground motion spatial variations has a significant effect on the seismic response of the structure,especially for the local site effect. Therefore,neglecting the earthquake ground motion spatial variations may lead to a substantial underestimation of the response of transmission tower-line system during strong earthquakes. Each effect of ground motion spatial variations should be incorporated in seismic analysis of the structural system.