Optical vortex arrays,with their unique wavefront structures,find extensive applications in fields such as optical communications,trapping,imaging,metrology,and quantum.The methods used to generate these vortex beam a...Optical vortex arrays,with their unique wavefront structures,find extensive applications in fields such as optical communications,trapping,imaging,metrology,and quantum.The methods used to generate these vortex beam arrays are crucial for their applications.In this review,we begin with introducing the fundamental concepts of optical vortex beams.Subsequently,we present three methods for generating them,including diffractive optical elements,metasurfaces,and integrated optical devices.We then explore the applications of optical vortex beam arrays in five different domains.Finally,we conclude with a summary and outlook for the research on optical vortex beam arrays.展开更多
The high-power mode-programmable orbital angular momentum(OAM)beam has attracted significant attention in a wide range of applications,such as long-distance optical communication,nonlinear frequency conversion,and bea...The high-power mode-programmable orbital angular momentum(OAM)beam has attracted significant attention in a wide range of applications,such as long-distance optical communication,nonlinear frequency conversion,and beam shaping.Coherent beam combining(CBC)of an optical phased array(OPA)can offer a promising solution for both generating the high-power OAM beam and rapidly switching the OAM modes.However,achieving real-time phase noise locking and formation of desired phase structures in a high-power CBC system faces significant challenges.Here,an internal phase-sensing technique was utilized to generate the high-power OAM beam,which effectively mitigated thermal effects and eliminated the need for large optical devices.An OPA with six elements was employed for experimental demonstration.The first effective generation of over 1.5 kW mode-programmable OAM beam in a continuous-wave domain was presented.Moreover,the results demonstrated that the generated OAM beam could be modulated with multiple dimensions.The topological charge can be switched in real time from-1 to-2.Notably,this OAM beam emitter could function as an OAM beam copier by easily transforming a single OAM beam into an OAM beam array.More importantly,a comprehensive analysis was conducted on power scaling,mode switching speed,and expansion of OAM modes.Additionally,the system’s compact design enabled it to function as a packageable OAM beam emitter.Owing to the advantages of having high power and programmable modes with multiple dimension modulation in phase structures and intensity distribution,this work can pave the way for producing high-power structured light beams and advancing their applications.展开更多
基金financially supported by the National Natural Science Foundation of China(NSFC)(Nos.62125503,62261160388,and 62101198)the Natural Science Foundation of Hubei Province of China(Nos.2021CFB011 and 2023AFA028)+2 种基金the Key R&D Program of Hubei Province of China(Nos.2020BAB001 and 2021BAA024)the Shenzhen Science and Technology Program(No.JCYJ20200109114018750)the Innovation Project of Optics Valley Laboratory(Nos.OVL2021BG004 and OVL2023ZD004)。
文摘Optical vortex arrays,with their unique wavefront structures,find extensive applications in fields such as optical communications,trapping,imaging,metrology,and quantum.The methods used to generate these vortex beam arrays are crucial for their applications.In this review,we begin with introducing the fundamental concepts of optical vortex beams.Subsequently,we present three methods for generating them,including diffractive optical elements,metasurfaces,and integrated optical devices.We then explore the applications of optical vortex beam arrays in five different domains.Finally,we conclude with a summary and outlook for the research on optical vortex beam arrays.
基金supported by the National Natural Science Foundation of China(Nos.62275272 and 62075242)Natural ScienceFoundationofHunanProvince,China(No.2019JJ10005)+1 种基金Training Program for Excellent Young Innovators of Changsha(No.kq2206003)Postgraduate Scientific Research Innovation Project of Hunan Province(No.QL20220013)。
文摘The high-power mode-programmable orbital angular momentum(OAM)beam has attracted significant attention in a wide range of applications,such as long-distance optical communication,nonlinear frequency conversion,and beam shaping.Coherent beam combining(CBC)of an optical phased array(OPA)can offer a promising solution for both generating the high-power OAM beam and rapidly switching the OAM modes.However,achieving real-time phase noise locking and formation of desired phase structures in a high-power CBC system faces significant challenges.Here,an internal phase-sensing technique was utilized to generate the high-power OAM beam,which effectively mitigated thermal effects and eliminated the need for large optical devices.An OPA with six elements was employed for experimental demonstration.The first effective generation of over 1.5 kW mode-programmable OAM beam in a continuous-wave domain was presented.Moreover,the results demonstrated that the generated OAM beam could be modulated with multiple dimensions.The topological charge can be switched in real time from-1 to-2.Notably,this OAM beam emitter could function as an OAM beam copier by easily transforming a single OAM beam into an OAM beam array.More importantly,a comprehensive analysis was conducted on power scaling,mode switching speed,and expansion of OAM modes.Additionally,the system’s compact design enabled it to function as a packageable OAM beam emitter.Owing to the advantages of having high power and programmable modes with multiple dimension modulation in phase structures and intensity distribution,this work can pave the way for producing high-power structured light beams and advancing their applications.