The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wav...The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification.展开更多
In the paper conventional Adaboost algorithm is improved and local features of face such as eyes and mouth are separated as mutual independent elements for facial feature extraction and classification. The multi-expre...In the paper conventional Adaboost algorithm is improved and local features of face such as eyes and mouth are separated as mutual independent elements for facial feature extraction and classification. The multi-expression classification algorithm which is based on Adaboost and mutual independent feature is proposed. In order to effectively and quickly train threshold values of weak classifiers of features, Sample of training is carried out simple improvement. We obtain a good classification results through experiments.展开更多
提出一种新的多类分类AdaBoost算法——使用多类分类指数损失函数的前向逐步叠加模型FSAMME(forward stagewise additive modeling using a multi-class exponential loss function)。该算法是基于原始的两类分类AdaBoost算法归结为使...提出一种新的多类分类AdaBoost算法——使用多类分类指数损失函数的前向逐步叠加模型FSAMME(forward stagewise additive modeling using a multi-class exponential loss function)。该算法是基于原始的两类分类AdaBoost算法归结为使用两类分类指数损失函数的前向逐步叠加模型的统计学观点,将两类分类的前向逐步叠加模型自然扩展到多类分类情况下得到的,并采用多类指数损失函数和前向逐步叠加模型对FSAMME进行了详细的理论证明。该算法大大降低对弱分类器的精度要求,只需每个弱分类器的精度比随机猜测好;算法简单明了,不用把多类问题转化为多个两类问题,而是直接求解多类分类问题,大大减小计算复杂度和计算量。通过对基准数据库的测试分类及航空发动机故障样本的诊断,结果表明:FSAMME算法一方面可达到较高的分类诊断准确率,其准确率明显高于AdaBoost.M1,略高于AdaBoost.MH;另一方面可大大减小计算成本,满足在线快速分类诊断的要求。展开更多
文摘The accurate identification and classification of various power quality disturbances are keys to ensuring high-quality electrical energy. In this study, the statistical characteristics of the disturbance signal of wavelet transform coefficients and wavelet transform energy distribution constitute feature vectors. These vectors are then trained and tested using SVM multi-class algorithms. Experimental results demonstrate that the SVM multi-class algorithms, which use the Gaussian radial basis function, exponential radial basis function, and hyperbolic tangent function as basis functions, are suitable methods for power quality disturbance classification.
文摘In the paper conventional Adaboost algorithm is improved and local features of face such as eyes and mouth are separated as mutual independent elements for facial feature extraction and classification. The multi-expression classification algorithm which is based on Adaboost and mutual independent feature is proposed. In order to effectively and quickly train threshold values of weak classifiers of features, Sample of training is carried out simple improvement. We obtain a good classification results through experiments.
文摘提出一种新的多类分类AdaBoost算法——使用多类分类指数损失函数的前向逐步叠加模型FSAMME(forward stagewise additive modeling using a multi-class exponential loss function)。该算法是基于原始的两类分类AdaBoost算法归结为使用两类分类指数损失函数的前向逐步叠加模型的统计学观点,将两类分类的前向逐步叠加模型自然扩展到多类分类情况下得到的,并采用多类指数损失函数和前向逐步叠加模型对FSAMME进行了详细的理论证明。该算法大大降低对弱分类器的精度要求,只需每个弱分类器的精度比随机猜测好;算法简单明了,不用把多类问题转化为多个两类问题,而是直接求解多类分类问题,大大减小计算复杂度和计算量。通过对基准数据库的测试分类及航空发动机故障样本的诊断,结果表明:FSAMME算法一方面可达到较高的分类诊断准确率,其准确率明显高于AdaBoost.M1,略高于AdaBoost.MH;另一方面可大大减小计算成本,满足在线快速分类诊断的要求。