期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Data fusion for fault diagnosis using multi-class Support Vector Machines 被引量:1
1
作者 胡中辉 蔡云泽 +1 位作者 李远贵 许晓鸣 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1030-1039,共10页
Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine... Multi-source multi-class classification methods based on multi-class Support Vector Machines and data fusion strategies are proposed in this paper. The centralized and distributed fusion schemes are applied to combine information from several data sources. In the centralized scheme, all information from several data sources is centralized to construct an input space. Then a multi-class Support Vector Machine classifier is trained. In the distributed schemes, the individual data sources are proc-essed separately and modelled by using the multi-class Support Vector Machine. Then new data fusion strategies are proposed to combine the information from the individual multi-class Support Vector Machine models. Our proposed fusion strategies take into account that an Support Vector Machine (SVM) classifier achieves classification by finding the optimal classification hyperplane with maximal margin. The proposed methods are applied for fault diagnosis of a diesel engine. The experimental results showed that almost all the proposed approaches can largely improve the diagnostic accuracy. The robustness of diagnosis is also improved because of the implementation of data fusion strategies. The proposed methods can also be applied in other fields. 展开更多
关键词 Data fusion Fault diagnosis multi-class classification multi-class support vector machines Diesel engine
下载PDF
Multi-Class Support Vector Machine Classifier Based on Jeffries-Matusita Distance and Directed Acyclic Graph 被引量:1
2
作者 Miao Zhang Zhen-Zhou Lai +1 位作者 Dan Li Yi Shen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期113-118,共6页
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise... Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method. 展开更多
关键词 multi-class classification support vector machine directed acyclic graph Jeffries-Matusitadistance hyperspcctral data
下载PDF
Pashto Characters Recognition Using Multi-Class Enabled Support Vector Machine
3
作者 Sulaiman Khan Shah Nazir +1 位作者 Habib Ullah Khan Anwar Hussain 《Computers, Materials & Continua》 SCIE EI 2021年第6期2831-2844,共14页
During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto lang... During the last two decades signicant work has been reported in the eld of cursive language’s recognition especially,in the Arabic,the Urdu and the Persian languages.The unavailability of such work in the Pashto language is because of:the absence of a standard database and of signicant research work that ultimately acts as a big barrier for the research community.The slight change in the Pashto characters’shape is an additional challenge for researchers.This paper presents an efcient OCR system for the handwritten Pashto characters based on multi-class enabled support vector machine using manifold feature extraction techniques.These feature extraction techniques include,tools such as zoning feature extractor,discrete cosine transform,discrete wavelet transform,and Gabor lters and histogram of oriented gradients.A hybrid feature map is developed by combining the manifold feature maps.This research work is performed by developing a medium-sized dataset of handwritten Pashto characters that encapsulate 200 handwritten samples for each 44 characters in the Pashto language.Recognition results are generated for the proposed model based on a manifold and hybrid feature map.An overall accuracy rates of 63.30%,65.13%,68.55%,68.28%,67.02%and 83%are generated based on a zoning technique,HoGs,Gabor lter,DCT,DWT and hybrid feature maps respectively.Applicability of the proposed model is also tested by comparing its results with a convolution neural network model.The convolution neural network-based model generated an accuracy rate of 81.02%smaller than the multi-class support vector machine.The highest accuracy rate of 83%for the multi-class SVM model based on a hybrid feature map reects the applicability of the proposed model. 展开更多
关键词 Pashto multi-class support vector machine handwritten characters database ZONING and histogram of oriented gradients
下载PDF
Endpoint Prediction of EAF Based on Multiple Support Vector Machines 被引量:12
4
作者 YUAN Ping MAO Zhi-zhong WANG Fu-li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第2期20-24,29,共6页
The endpoint parameters are very important to the process of EAF steel-making, but their on-line measurement is difficult. The soft sensor technology is widely used for the prediction of endpoint parameters. Based on ... The endpoint parameters are very important to the process of EAF steel-making, but their on-line measurement is difficult. The soft sensor technology is widely used for the prediction of endpoint parameters. Based on the analysis of the smelting process of EAF and the advantages of support vector machines, a soft sensor model for predicting the endpoint parameters was built using multiple support vector machines (MSVM). In this model, the input space was divided by subtractive clustering and a sub-model based on LS-SVM was built in each sub-space. To decrease the correlation among the sub-models and to improve the accuracy and robustness of the model, the sub- models were combined by Principal Components Regression. The accuracy of the soft sensor model is perfectly improved. The simulation result demonstrates the practicability and efficiency of the MSVM model for the endpoint prediction of EAF. 展开更多
关键词 endpoint prediction EAF soft sensor model multiple support vector machine (msvm principal components regression (PCR)
下载PDF
Support vector machine-based multi-model predictive control 被引量:3
5
作者 Zhejing BAO Youxian SUN 《控制理论与应用(英文版)》 EI 2008年第3期305-310,共6页
In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression ... In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results. 展开更多
关键词 Multi-model predictive control support vector machine network multi-class support vector machine Multi-model switching
下载PDF
Fault Diagnosis for Aero-engine Applying a New Multi-class Support Vector Algorithm 被引量:4
6
作者 徐启华 师军 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第3期175-182,共8页
Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based... Hierarchical Support Vector Machine (H-SVM) is faster in training and classification than other usual multi-class SVMs such as "1-V-R"and "1-V-1". In this paper, a new multi-class fault diagnosis algorithm based on H-SVM is proposed and applied to aero-engine. Before SVM training, the training data are first clustered according to their class-center Euclid distances in some feature spaces. The samples which have close distances are divided into the same sub-classes for training, and this makes the H-SVM have reasonable hierarchical construction and good generalization performance. Instead of the common C-SVM, the v-SVM is selected as the binary classifier, in which the parameter v varies only from 0 to 1 and can be determined more easily. The simulation results show that the designed H-SVMs can fast diagnose the multi-class single faults and combination faults for the gas path components of an aero-engine. The fault classifiers have good diagnosis accuracy and can keep robust even when the measurement inputs are disturbed by noises. 展开更多
关键词 support vector machine fault diagnosis multi-class classification
下载PDF
Recognition and Classification of Pomegranate Leaves Diseases by Image Processing and Machine Learning Techniques 被引量:1
7
作者 Mangena Venu Madhavan Dang Ngoc Hoang Thanh +3 位作者 Aditya Khamparia Sagar Pande RahulMalik Deepak Gupta 《Computers, Materials & Continua》 SCIE EI 2021年第3期2939-2955,共17页
Disease recognition in plants is one of the essential problems in agricultural image processing.This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly.The ... Disease recognition in plants is one of the essential problems in agricultural image processing.This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly.The framework utilizes image processing techniques such as image acquisition,image resizing,image enhancement,image segmentation,ROI extraction(region of interest),and feature extraction.An image dataset related to pomegranate leaf disease is utilized to implement the framework,divided into a training set and a test set.In the implementation process,techniques such as image enhancement and image segmentation are primarily used for identifying ROI and features.An image classification will then be implemented by combining a supervised learning model with a support vector machine.The proposed framework is developed based on MATLAB with a graphical user interface.According to the experimental results,the proposed framework can achieve 98.39%accuracy for classifying diseased and healthy leaves.Moreover,the framework can achieve an accuracy of 98.07%for classifying diseases on pomegranate leaves. 展开更多
关键词 Image enhancement image segmentation image processing for agriculture K-MEANS multi-class support vector machine
下载PDF
Multi-class classification method for strip steel surface defects based on support vector machine with adjustable hyper-sphere 被引量:2
8
作者 Mao-xiang Chu Xiao-ping Liu +1 位作者 Rong-fen Gong Jie Zhao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第7期706-716,共11页
Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated f... Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated from support vector data description, AHSVM adopts hyper-sphere to solve classification problem. AHSVM can obey two principles: the margin maximization and inner-class dispersion minimization. Moreover, the hyper-sphere of AHSVM is adjustable, which makes the final classification hyper-sphere optimal for training dataset. On the other hand, AHSVM is combined with binary tree to solve multi-class classification for steel surface defects. A scheme of samples pruning in mapped feature space is provided, which can reduce the number of training samples under the premise of classification accuracy, resulting in the improvements of classification speed. Finally, some testing experiments are done for eight types of strip steel surface defects. Experimental results show that multi-class AHSVM classifier exhibits satisfactory results in classification accuracy and efficiency. 展开更多
关键词 Strip steel surface defect multi-class classification supporting vector machine Adjustable hyper-sphere
原文传递
基于GARCH模型MSVM的轴承故障诊断方法 被引量:8
9
作者 陶新民 徐晶 +1 位作者 杨立标 刘玉 《振动与冲击》 EI CSCD 北大核心 2010年第5期11-15,236-237,共5页
针对振动信号因非平稳性导致自回归(AR)模型无法有效描述信号特征的不足,提出一种基于广义自回归条件异方差(GARCH)模型多类支持向量机(MSVM)的故障诊断方法。该方法首先利用GARCH模型拟合各种故障信号,将所得模型参数作为故障诊断特征,... 针对振动信号因非平稳性导致自回归(AR)模型无法有效描述信号特征的不足,提出一种基于广义自回归条件异方差(GARCH)模型多类支持向量机(MSVM)的故障诊断方法。该方法首先利用GARCH模型拟合各种故障信号,将所得模型参数作为故障诊断特征,以MSVM作为故障诊断方法。试验结果验证了GARCH模型方法的可行性和有效性,同时将该方法同基于AR模型的方法及其改进方法进行比较,结果表明该方法在诊断率及诊断时间上都有明显提高。 展开更多
关键词 故障诊断GARCH模型 多类支持向量机
下载PDF
基于MSVM的多品种小批量动态过程在线质量智能诊断 被引量:11
10
作者 刘玉敏 周昊飞 《中国机械工程》 EI CAS CSCD 北大核心 2015年第17期2356-2363,共8页
提出了基于多分类支持向量机(MSVM)的多品种、小批量动态过程在线质量智能诊断方法。离线训练时,提取异常模式仿真数据的小波重构特征,对MSVM识别和估计模型进行训练和测试,同时建立异常因素诊断库;在线诊断时,对"监控窗口"... 提出了基于多分类支持向量机(MSVM)的多品种、小批量动态过程在线质量智能诊断方法。离线训练时,提取异常模式仿真数据的小波重构特征,对MSVM识别和估计模型进行训练和测试,同时建立异常因素诊断库;在线诊断时,对"监控窗口"数据特征的过程模式及参数进行识别与估计,而后利用异常因素诊断库实现对多品种、小批量动态过程实时在线智能诊断。某精密轴加工过程实例验证了该智能诊断方法的有效性。 展开更多
关键词 多品种小批量 质量异常模式 小波重构 分类支持向量机(msvm) 在线智能诊断
下载PDF
Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine 被引量:15
11
作者 Hongshan ZHAO Yufeng GAO +1 位作者 Huihai LIU Lang LI 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2019年第2期350-356,共7页
In order to accurately identify a bearing fault on a wind turbine, a novel fault diagnosis method based on stochastic subspace identification(SSI) and multi-kernel support vector machine(MSVM) is proposed. Firstly, th... In order to accurately identify a bearing fault on a wind turbine, a novel fault diagnosis method based on stochastic subspace identification(SSI) and multi-kernel support vector machine(MSVM) is proposed. Firstly, the collected vibration signal of the wind turbine bearing is processed by the SSI method to extract fault feature vectors. Then, the MSVM is constructed based on Gauss kernel support vector machine(SVM) and polynomial kernel SVM. Finally, fault feature vectors which indicate the condition of the wind turbine bearing are inputted to the MSVM for fault pattern recognition. The results indicate that the SSI-MSVM method is effective in fault diagnosis for a wind turbine bearing and can successfully identify fault types of bearing and achieve higher diagnostic accuracy than that of K-means clustering, fuzzy means clustering and traditional SVM. 展开更多
关键词 Wind TURBINE BEARING Fault diagnosis Stochastic SUBSPACE identification(SSI) Multi-kernel support vector machine(msvm)
原文传递
Identification of fruit and branch in natural scenes for citrus harvesting robot using machine vision and support vector machine 被引量:18
12
作者 Lü Qiang Cai Jianrong +2 位作者 Liu Bin Deng Lie Zhang Yajing 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2014年第2期115-121,共7页
With the decrease of agricultural labor and the increase of production cost,the researches on citrus harvesting robot(CHR)have received more and more attention in recent years.For the success of robotic harvesting and... With the decrease of agricultural labor and the increase of production cost,the researches on citrus harvesting robot(CHR)have received more and more attention in recent years.For the success of robotic harvesting and the safety of robot,the identification of mature citrus fruit and obstacle is the priority of robotic harvesting.In this work,a machine vision system,which consisted of a color CCD camera and a computer,was developed to achieve these tasks.Images of citrus trees were captured under sunny and cloudy conditions.Due to varying degrees of lightness and position randomness of fruits and branches,red,green,and blue values of objects in these images are changed dramatically.The traditional threshold segmentation is not efficient to solve these problems.Multi-class support vector machine(SVM),which succeeds by morphological operation,was used to simultaneously segment the fruits and branches in this study.The recognition rate of citrus fruit was 92.4%,and the branch of which diameter was more than 5 pixels,could be recognized.The results showed that the algorithm could be used to detect the fruits and branches for CHR. 展开更多
关键词 CITRUS machine vision citrus harvesting robot(CHR) branch IDENTIFICATION multi-class support vector machine(SVM)
原文传递
基于SSI-MSVM的调相机轴承故障诊断方法 被引量:4
13
作者 张玉良 马宏忠 +2 位作者 蒋梦瑶 蔚超 林元棣 《电机与控制应用》 2021年第3期87-93,共7页
随着新能源的并网与特高压直流输电的发展,电网对无功调节的要求也逐步提高,因此大型调相机再次被投入使用。为了便于对调相机轴承进行故障诊断,提出了一种基于随机子空间识别(SSI)和多核支持向量机(MSVM)的故障诊断方法。在调相机轴承... 随着新能源的并网与特高压直流输电的发展,电网对无功调节的要求也逐步提高,因此大型调相机再次被投入使用。为了便于对调相机轴承进行故障诊断,提出了一种基于随机子空间识别(SSI)和多核支持向量机(MSVM)的故障诊断方法。在调相机轴承外侧表面不同的位置利用振动传感器采集振动信号,利用随机子空间模型进行特征提取,再根据高斯支持向量机和多核学习方法构造MSVM,然后将提取出的特征数据输入MSVM进行故障诊断。试验结果证明,基于SSI-MSVM的故障诊断方法能够适用于调相机轴承,且可以成功对故障进行辨识。 展开更多
关键词 调相机 随机子空间识别 多核支持向量机 故障诊断
下载PDF
Wi-Wheat+:Contact-free wheat moisture sensing with commodity WiFi based on entropy
14
作者 Weidong Yang Erbo Shen +3 位作者 Xuyu Wang Shiwen Mao Yuehong Gong Pengming Hu 《Digital Communications and Networks》 SCIE CSCD 2023年第3期698-709,共12页
In this paper,we propose a contact-free wheat moisture monitoring system,termed Wi-Wheatþ,to address the several limitations of the existing grain moisture detection technologies,such as time-consuming process,ex... In this paper,we propose a contact-free wheat moisture monitoring system,termed Wi-Wheatþ,to address the several limitations of the existing grain moisture detection technologies,such as time-consuming process,expensive equipment,low accuracy,and difficulty in real-time monitoring.The proposed system is based on Commodity WiFi and is easy to deploy.Leveraging WiFi CSI data,this paper proposes a feature extraction method based on multi-scale and multi-channel entropy.The feasibility and stability of the system are validated through experiments in both Line-Of-Sight(LOS)and Non-Line-Of-Sight(NLOS)scenarios,where ten types of wheat moisture content are tested using multi-class Support Vector Machine(SVM).Compared with the Wi-Wheat system proposed in our prior work,Wi-Wheatþhas higher efficiency,requiring only a simple training process,and can sense more wheat moisture content levels. 展开更多
关键词 Channel state information(CSI) WIFI Multi-scale entropy multi-class support vector machine(SVM) Radio frequency(RF)sensing
下载PDF
基于相对特征和多变量支持向量机的滚动轴承剩余寿命预测 被引量:138
15
作者 申中杰 陈雪峰 +3 位作者 何正嘉 孙闯 张小丽 刘治汶 《机械工程学报》 EI CAS CSCD 北大核心 2013年第2期183-189,共7页
为解决有限状态数据下滚动轴承剩余寿命难以估算的问题,提出一种基于相对特征和多变量支持向量机(Multivariablesupport vector machine,MSVM)的剩余寿命预测的新方法。该方法利用不受轴承个体差异影响的相对方均根值(Relative rootmean... 为解决有限状态数据下滚动轴承剩余寿命难以估算的问题,提出一种基于相对特征和多变量支持向量机(Multivariablesupport vector machine,MSVM)的剩余寿命预测的新方法。该方法利用不受轴承个体差异影响的相对方均根值(Relative rootmean square,RRMS)评估轴承性能衰退规律,运用相关分析选取敏感特征作为输入,构造兼顾多变量回归和小样本预测双重优势的MSVM模型预测轴承剩余寿命。与单变量支持向量机相比,MSVM克服了结构简单、信息匮乏等缺点,实现小样本数据潜在信息的最大挖掘。运用仿真数据和轴承全寿命试验数据对预测模型进行检验,结果表明MSVM可在小样本条件下利用尽可能多的有效信息获得准确的预测结果,具有较强的工程使用价值和通用性。 展开更多
关键词 剩余寿命预测 相对方均根值 性能衰退评估 多变量支持向量机
下载PDF
基于多维支持向量机的P2P网络流量识别模型 被引量:16
16
作者 孙知信 张玉峰 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第5期1298-1302,共5页
提出一种多维支持向量机(MSVM)训练方法,并建立了一种基于多维支持向量机的P2P网络流量识别模型。该模型利用多维支持向量机作为分类器来识别P2P流量,各种网络流量经过数据捕获模块、特征提取模块、数据预处理模块以及MSVM训练模块将网... 提出一种多维支持向量机(MSVM)训练方法,并建立了一种基于多维支持向量机的P2P网络流量识别模型。该模型利用多维支持向量机作为分类器来识别P2P流量,各种网络流量经过数据捕获模块、特征提取模块、数据预处理模块以及MSVM训练模块将网络流量分类成P2P流量和Non-P2P流量,再经过组建的MSVM支持向量库识别出具体的P2P流量和未知P2P。未知的P2P流量经过数据采集模块、特征提取模块、数据预处理模块以及MSVM训练模块将其特征数据加入MSVM支持向量库,以便将来识别P2P流量。理论分析与数值实验表明,该模型具有较好的实验结果和所期望的识别精确度。 展开更多
关键词 计算机系统结构 对等网络 多维支持向量机(msvm) 最优超平面
下载PDF
一种基于支持向量机的齿轮箱故障诊断方法 被引量:17
17
作者 吴德会 《振动.测试与诊断》 EI CSCD 2008年第4期338-342,共5页
提出了一种基于多分类支持向量机(简称MSVM)的齿轮箱故障诊断方法。先根据齿轮箱故障机理和振动特点,探讨了齿轮箱故障诊断试验方案。再测取齿轮箱振动信号,并提取了能反映齿轮箱运转信息的时频域特征参数。通过结合投票法和决策树的基... 提出了一种基于多分类支持向量机(简称MSVM)的齿轮箱故障诊断方法。先根据齿轮箱故障机理和振动特点,探讨了齿轮箱故障诊断试验方案。再测取齿轮箱振动信号,并提取了能反映齿轮箱运转信息的时频域特征参数。通过结合投票法和决策树的基本思想,有针对性地构造了多分类支持向量机决策结构并将其应用于齿轮箱故障诊断。实际齿轮箱故障诊断试验结果表明,该决策结构较好地解决了小样本学习问题,避免了人工神经网络进行诊断时出现的过学习、收敛速度慢、泛化能力弱等缺点,能有效应用于齿轮箱故障诊断。 展开更多
关键词 故障 诊断 决策 齿轮箱 多分类支持向量机人工神经网络
下载PDF
一种SRBCT亚型识别与特征基因选取方法 被引量:1
18
作者 何爱香 朱云华 安凯 《计算机工程与应用》 CSCD 北大核心 2007年第3期223-226,共4页
基于基因表达谱提出了一种选取特征基因并使用多类支持向量机(MSVM)进行肿瘤亚型识别的方法。就小圆蓝细胞瘤(SRBCT)的亚型识别问题,以组间和组内平方和比率(BSS/WSS)作为衡量基因分类重要性的标准,据此选择基因构造若干MSVM模型,由分... 基于基因表达谱提出了一种选取特征基因并使用多类支持向量机(MSVM)进行肿瘤亚型识别的方法。就小圆蓝细胞瘤(SRBCT)的亚型识别问题,以组间和组内平方和比率(BSS/WSS)作为衡量基因分类重要性的标准,据此选择基因构造若干MSVM模型,由分类错误率确定了含25个基因的特征集合,并利用基于相关距离的冗余分析方法去除冗余,得到15个特征基因。基于该特征子集构造的MSVM在测试集上取得100%的预测准确率。与相关文献的比较表明了该方法的有效性和可行性。 展开更多
关键词 多类支持向量机 基因表达谱 特征选取
下载PDF
基于统计分析和多支持向量机的风电功率坡度事件分类预测 被引量:1
19
作者 李福东 吴敏 冯高熠 《上海交通大学学报》 EI CAS CSCD 北大核心 2012年第12期1971-1976,共6页
为准确评估风电功率变化行为的影响,优化风电系统控制,提出了基于统计分析和多支持向量机的风电功率坡度事件分类预测方法.通过对风电功率坡度事件进行定义和分类,利用风电场的实际运行数据,对不同统计周期和不同方向的坡度事件幅度分... 为准确评估风电功率变化行为的影响,优化风电系统控制,提出了基于统计分析和多支持向量机的风电功率坡度事件分类预测方法.通过对风电功率坡度事件进行定义和分类,利用风电场的实际运行数据,对不同统计周期和不同方向的坡度事件幅度分布和时间段分布进行了统计分析,找到了功率坡度事件变化的内在规律.在此基础上,将二元支持向量机(Support Vector Machine,SVM)拓展到多支持向量机(Multiple Support Vector Machines,MSVMs),建立了对功率坡度事件类别的一步和多步预测.实验结果表明,所提方法具有较高的坡度事件预测精度和稳定性,可以对风电功率变化进行准确的风险预测,有利于风电系统的优化控制. 展开更多
关键词 风电功率 坡度事件 多支持向量机 类别 预测
下载PDF
基于多分类支持向量机的智能辅助质量诊断研究 被引量:5
20
作者 吴德会 《系统仿真学报》 CAS CSCD 北大核心 2009年第6期1689-1692,1696,共5页
在分析比较目前常用的质量辅助诊断方法局限性的基础上,提出了一种基于多分类支持向量机(SVM)的质量控制图智能诊断新方法。该方法以SVM技术为智能核心,较好地解决小样本学习问题,避免了人工神经网络等智能方法在对小批量生产过程质量... 在分析比较目前常用的质量辅助诊断方法局限性的基础上,提出了一种基于多分类支持向量机(SVM)的质量控制图智能诊断新方法。该方法以SVM技术为智能核心,较好地解决小样本学习问题,避免了人工神经网络等智能方法在对小批量生产过程质量诊断时所表示出的过学习、泛化能力弱等缺点。另一方面,通过结合投票法和决策树的基本思想,所提方法拓展出对控制图混合型异常模式的识别能力,从而提高了对质量过程诊断的全面性和准确性。与其它几种常见人工智能方法质量诊断的效果进行对比,实验表明,所提方法容易实现、诊断精度高,为实现小批量加工过程的在线质量诊断与控制提供可行的思路。 展开更多
关键词 小批量 质量诊断 多分类支持向量机 决策树
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部