期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
An Elite-Class Teaching-Learning-Based Optimization for Reentrant Hybrid Flow Shop Scheduling with Bottleneck Stage
1
作者 Deming Lei Surui Duan +1 位作者 Mingbo Li Jing Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期47-63,共17页
Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid ... Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid flow shop scheduling problem(RHFSP)with a bottleneck stage is considered,and an elite-class teaching-learning-based optimization(ETLBO)algorithm is proposed to minimize maximum completion time.To produce high-quality solutions,teachers are divided into formal ones and substitute ones,and multiple classes are formed.The teacher phase is composed of teacher competition and teacher teaching.The learner phase is replaced with a reinforcement search of the elite class.Adaptive adjustment on teachers and classes is established based on class quality,which is determined by the number of elite solutions in class.Numerous experimental results demonstrate the effectiveness of new strategies,and ETLBO has a significant advantage in solving the considered RHFSP. 展开更多
关键词 Hybrid flow shop scheduling REENTRANT bottleneck stage teaching-learning-based optimization
下载PDF
Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer 被引量:12
2
作者 Wei Chen Xi Chen +2 位作者 Jianbing Peng Mahdi Panahi Saro Lee 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期93-107,共15页
As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been ... As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been the ability to predict landslide susceptibility,which can be used to design schemes of land exploitation and urban development in mountainous areas.In this study,the teaching-learning-based optimization(TLBO)and satin bowerbird optimizer(SBO)algorithms were applied to optimize the adaptive neuro-fuzzy inference system(ANFIS)model for landslide susceptibility mapping.In the study area,152 landslides were identified and randomly divided into two groups as training(70%)and validation(30%)dataset.Additionally,a total of fifteen landslide influencing factors were selected.The relative importance and weights of various influencing factors were determined using the step-wise weight assessment ratio analysis(SWARA)method.Finally,the comprehensive performance of the two models was validated and compared using various indexes,such as the root mean square error(RMSE),processing time,convergence,and area under receiver operating characteristic curves(AUROC).The results demonstrated that the AUROC values of the ANFIS,ANFIS-TLBO and ANFIS-SBO models with the training data were 0.808,0.785 and 0.755,respectively.In terms of the validation dataset,the ANFISSBO model exhibited a higher AUROC value of 0.781,while the AUROC value of the ANFIS-TLBO and ANFIS models were 0.749 and 0.681,respectively.Moreover,the ANFIS-SBO model showed lower RMSE values for the validation dataset,indicating that the SBO algorithm had a better optimization capability.Meanwhile,the processing time and convergence of the ANFIS-SBO model were far superior to those of the ANFIS-TLBO model.Therefore,both the ensemble models proposed in this paper can generate adequate results,and the ANFIS-SBO model is recommended as the more suitable model for landslide susceptibility assessment in the study area considered due to its excellent accuracy and efficiency. 展开更多
关键词 Landslide susceptibility Step-wise weight assessment ratio analysis Adaptive neuro-fuzzy fuzzy inference system teaching-learning-based optimization Satin bowerbird optimizer
下载PDF
Effective Hybrid Teaching-learning-based Optimization Algorithm for Balancing Two-sided Assembly Lines with Multiple Constraints 被引量:8
3
作者 TANG Qiuhua LI Zixiang +2 位作者 ZHANG Liping FLOUDAS C A CAO Xiaojun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期1067-1079,共13页
Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In ... Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS. 展开更多
关键词 two-sided assembly line balancing teaching-learning-based optimization algorithm variable neighborhood search positional constraints zoning constraints synchronism constraints
下载PDF
Improved Teaching-Learning-Based Optimization Algorithm for Modeling NOX Emissions of a Boiler
4
作者 Xia Li Peifeng Niu +1 位作者 Jianping Liu Qing Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第10期29-57,共29页
An improved teaching-learning-based optimization(I-TLBO)algorithm is proposed to adjust the parameters of extreme learning machine with parallel layer perception(PELM),and a well-generalized I-TLBO-PELM model is obtai... An improved teaching-learning-based optimization(I-TLBO)algorithm is proposed to adjust the parameters of extreme learning machine with parallel layer perception(PELM),and a well-generalized I-TLBO-PELM model is obtained to build the model of NOX emissions of a boiler.In the I-TLBO algorithm,there are four major highlights.Firstly,a quantum initialized population by using the qubits on Bloch sphere replaces a randomly initialized population.Secondly,two kinds of angles in Bloch sphere are generated by using cube chaos mapping.Thirdly,an adaptive control parameter is added into the teacher phase to speed up the convergent speed.And then,according to actual teaching-learning phenomenon of a classroom,students learn some knowledge not only by their teacher and classmates,but also by themselves.Therefore,a self-study strategy by using Gauss mutation is introduced after the learning phase to improve the exploration ability.Finally,we test the performance of the I-TLBO-PELM model.The experiment results show that the proposed model has better regression precision and generalization ability than eight other models. 展开更多
关键词 BLOCH sphere QUBITS SELF-LEARNING IMPROVED teaching-learning-based optimization(I-TLBO)algorithm
下载PDF
A Bi-population Cooperative Optimization Algorithm Assisted by an Autoencoder for Medium-scale Expensive Problems 被引量:2
5
作者 Meiji Cui Li Li +3 位作者 MengChu Zhou Jiankai Li Abdullah Abusorrah Khaled Sedraoui 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第11期1952-1966,共15页
This study presents an autoencoder-embedded optimization(AEO)algorithm which involves a bi-population cooperative strategy for medium-scale expensive problems(MEPs).A huge search space can be compressed to an informat... This study presents an autoencoder-embedded optimization(AEO)algorithm which involves a bi-population cooperative strategy for medium-scale expensive problems(MEPs).A huge search space can be compressed to an informative lowdimensional space by using an autoencoder as a dimension reduction tool.The search operation conducted in this low space facilitates the population with fast convergence towards the optima.To strike the balance between exploration and exploitation during optimization,two phases of a tailored teaching-learning-based optimization(TTLBO)are adopted to coevolve solutions in a distributed fashion,wherein one is assisted by an autoencoder and the other undergoes a regular evolutionary process.Also,a dynamic size adjustment scheme according to problem dimension and evolutionary progress is proposed to promote information exchange between these two phases and accelerate evolutionary convergence speed.The proposed algorithm is validated by testing benchmark functions with dimensions varying from 50 to 200.As indicated in our experiments,TTLBO is suitable for dealing with medium-scale problems and thus incorporated into the AEO framework as a base optimizer.Compared with the state-of-the-art algorithms for MEPs,AEO shows extraordinarily high efficiency for these challenging problems,t hus opening new directions for various evolutionary algorithms under AEO to tackle MEPs and greatly advancing the field of medium-scale computationally expensive optimization. 展开更多
关键词 Autoencoder dimension reduction evolutionary algorithm medium-scale expensive problems teaching-learning-based optimization
下载PDF
Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm-Based Clustering Scheme for Augmenting Network Lifetime in WSNs
6
作者 N Tamilarasan SB Lenin +1 位作者 P Mukunthan NC Sendhilkumar 《China Communications》 SCIE 2024年第9期159-178,共20页
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw... In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches. 展开更多
关键词 Adaptive Grasshopper optimization Algorithm(AGOA) Cluster Head(CH) network lifetime teaching-learning-based optimization Algorithm(TLOA) Wireless Sensor Networks(WSNs)
下载PDF
基于TLBO算法的不确定性条件下复杂产品协同设计的可靠性拓扑优化 被引量:1
7
作者 Zhaoxi Hong Xiangyu Jiang +2 位作者 冯毅雄 Qinyu Tian 谭建荣 《Engineering》 SCIE EI CAS CSCD 2023年第3期71-81,共11页
复杂产品的拓扑优化设计可以显著节省材料和节能,有效地降低惯性力和机械振动。本研究以一种大吨位液压机作为典型的复杂产品,用于阐述该优化方法。本文提出了一种基于可靠性与优化解耦模型和基于教学学习的优化(TLBO)算法的可靠性拓扑... 复杂产品的拓扑优化设计可以显著节省材料和节能,有效地降低惯性力和机械振动。本研究以一种大吨位液压机作为典型的复杂产品,用于阐述该优化方法。本文提出了一种基于可靠性与优化解耦模型和基于教学学习的优化(TLBO)算法的可靠性拓扑优化方法。将由板结构形成的支撑物作为拓扑优化对象,重量轻、稳定性好。将不确定性下的可靠性优化和结构拓扑优化协同处理。首先,利用有限差分法将优化问题中的不确定性参数修正为确定性参数。然后,将不确定性可靠性分析和拓扑优化的复杂嵌套解耦。最后,利用TLBO算法求解解耦模型,该算法参数少,求解速度快。TLBO算法采用了自适应教学因子,在初始阶段实现了更快的收敛速度,并在后期进行了更精细的搜索。本文给出了一个液压机基板结构的数值实例,说明了该方法的有效性。 展开更多
关键词 Plates structure Reliability Collaborative topology optimization teaching-learning-based optimization algorithm UNCERTAINTY Collaborative design for product life cycle
下载PDF
考虑阀点效应的电力系统经济分配算法 被引量:2
8
作者 何湘竹 黄继达 《计算机工程与应用》 CSCD 北大核心 2015年第20期227-233,共7页
经济分配(ED)对于电力系统的节能至关重要,适当的分配方法可以为电厂节约巨额生产成本,然而阀点效应使得实际ED问题呈现出不光滑和非凸的特性,导致一些经典的优化算法和启发式算法无法在合理时间内发现最优解。提出一种新的改进教与学... 经济分配(ED)对于电力系统的节能至关重要,适当的分配方法可以为电厂节约巨额生产成本,然而阀点效应使得实际ED问题呈现出不光滑和非凸的特性,导致一些经典的优化算法和启发式算法无法在合理时间内发现最优解。提出一种新的改进教与学优化算法来求解计及阀点效应的经济分配问题,并采用一种新的修正策略取代罚函数法来处理约束条件。为了验证新算法的有效性和鲁棒性,选取典型的benchmark函数和ED实例进行仿真计算,结果表明与其他代表性算法相比,该方法求解精度高、收敛速度快,为计及阀点效应的经济分配问题求解提供了一条新途径。 展开更多
关键词 电力系统 经济分配 阀点效应 改进的教与学优化算法 MODIFIED teaching-learning-based optimization algo-rithm(CTLBO)
下载PDF
An Efficient Hybrid TLBO-PSO Approach for Congestion Management Employing Real Power Generation Rescheduling
9
作者 Muneeb Ul Bashir Ward Ul Hijaz Paul +2 位作者 Mubassir Ahmad Danish Ali Md. Safdar Ali 《Smart Grid and Renewable Energy》 2021年第8期113-135,共23页
<span style="font-family:Verdana;">In the present deregulated electricity market, power system congestion is the main complication that an independent system operator (ISO) faces on a regular basis. Tr... <span style="font-family:Verdana;">In the present deregulated electricity market, power system congestion is the main complication that an independent system operator (ISO) faces on a regular basis. Transmission line congestion trigger serious problems for smooth functioning in restructured power system causing an increase in the cost of transmission hence affecting market efficiency. Thus, it is of utmost importance for the investigation of various techniques in order to relieve congestion in the transmission network. Generation rescheduling is one of the most efficacious techniques to do away with the problem of congestion. For optimiz</span><span style="font-family:Verdana;">ing the congestion cost, this work suggests a hybrid optimization based on</span><span style="font-family:Verdana;"> two effective algorithms viz Teaching learning-based optimization (TLBO) algorithm and Particle swarm optimization (PSO) algorithm. For binding the constraints, the traditional penalty function technique is incorporated. Modified IEEE 30-bus test system and modified IEEE 57-bus test system are used to inspect the usefulness of the suggested methodology.</span> 展开更多
关键词 Congestion Management DEREGULATION optimal Power Flow teaching-learning-based optimization (TLBO) Power System Modeling
下载PDF
On Unsupervised Training of Multi-Class Regularized Least-Squares Classifiers
10
作者 Tapio Pahikkala Antti Airola +1 位作者 Fabian Gieseke Oliver Kramer 《Journal of Computer Science & Technology》 SCIE EI CSCD 2014年第1期90-104,共15页
In this work we present the first efficient algorithm for unsupervised training of multi-class regularized least- squares classifiers. The approach is closely related to the unsupervised extension of the support vecto... In this work we present the first efficient algorithm for unsupervised training of multi-class regularized least- squares classifiers. The approach is closely related to the unsupervised extension of the support vector machine classifier known as maximum margin clustering, which recently has received considerable attention, though mostly considering the binary classification case. We present a combinatorial search scheme that combines steepest descent strategies with powerful meta-heuristics for avoiding bad local optima. The regularized least-squares based formulation of the problem allows us to use matrix algebraic optimization enabling constant time checks for the intermediate candidate solutions during the search. Our experimental evaluation indicates the potential of the novel method and demonstrates its superior clustering performance over a variety of competing methods on real world datasets. Both time complexity analysis and experimental comparisons show that the method can scale well to practical sized problems. 展开更多
关键词 unsupervised learning multi-class regularized least-squares classification maximum margin clustering combinatorial optimization
原文传递
A primal perspective for indefinite kernel SVM problem
11
作者 Hui XUE Haiming XU +1 位作者 Xiaohong CHEN Yunyun WANG 《Frontiers of Computer Science》 SCIE EI CSCD 2020年第2期349-363,共15页
Indefinite kernel support vector machine(IKSVM)has recently attracted increasing attentions in machine learning.Since IKSVM essentially is a non-convex problem,existing algorithms either change the spectrum of indefin... Indefinite kernel support vector machine(IKSVM)has recently attracted increasing attentions in machine learning.Since IKSVM essentially is a non-convex problem,existing algorithms either change the spectrum of indefinite kernel directly but risking losing some valuable information or solve the dual form of IKSVM whereas suffering from a dual gap problem.In this paper,we propose a primal perspective for solving the problem.That is,we directly focus on the primal form of IKSVM and present a novel algorithm termed as IKSVM-DC for binary and multi-class classification.Concretely,according to the characteristics of the spectrum for the indefinite kernel matrix,IKSVM-DC decomposes the primal function into the subtraction of two convex functions as a difference of convex functions(DC)programming.To accelerate convergence rate,IKSVM-DC combines the classical DC algorithm with a line search step along the descent direction at each iteration.Furthermore,we construct a multi-class IKSVM model which can classify multiple classes in a unified form.A theoretical analysis is then presented to validate that IKSVM-DC can converge to a local minimum.Finally,we conduct experiments on both binary and multi-class datasets and the experimental results show that IKSVM-DC is superior to other state-of-the-art IKSVM algorithms. 展开更多
关键词 INDEFINITE KERNEL support VECTOR MACHINE multi-class classification non-convex optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部