期刊文献+
共找到2,564篇文章
< 1 2 129 >
每页显示 20 50 100
A comparison of model choice strategies for logistic regression
1
作者 Markku Karhunen 《Journal of Data and Information Science》 CSCD 2024年第1期37-52,共16页
Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/appr... Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/approach:The study is based on Monte Carlo simulations.The methods are compared in terms of three measures of accuracy:specificity and two kinds of sensitivity.A loss function combining sensitivity and specificity is introduced and used for a final comparison.Findings:The choice of method depends on how much the users emphasize sensitivity against specificity.It also depends on the sample size.For a typical logistic regression setting with a moderate sample size and a small to moderate effect size,either BIC,BICc or Lasso seems to be optimal.Research limitations:Numerical simulations cannot cover the whole range of data-generating processes occurring with real-world data.Thus,more simulations are needed.Practical implications:Researchers can refer to these results if they believe that their data-generating process is somewhat similar to some of the scenarios presented in this paper.Alternatively,they could run their own simulations and calculate the loss function.Originality/value:This is a systematic comparison of model choice algorithms and heuristics in context of logistic regression.The distinction between two types of sensitivity and a comparison based on a loss function are methodological novelties. 展开更多
关键词 model choice logistic regression Logit regression Monte Carlo simulations Sensitivity SPECIFICITY
下载PDF
Utilization of Logistical Regression to the Modified Sine-Gordon Model in the MST Experiment
2
作者 Nizar J. Alkhateeb Hameed K. Ebraheem Eman M. Al-Otaibi 《Open Journal of Modelling and Simulation》 2024年第2期43-58,共16页
In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), ob... In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), observed to travel around the torus in Madison Symmetric Torus (MST). The LR analysis is used to utilize the modified Sine-Gordon dynamic equation model to predict with high confidence whether the slinky mode will lock or not lock when compared to the experimentally measured motion of the slinky mode. It is observed that under certain conditions, the slinky mode “locks” at or near the intersection of poloidal and/or toroidal gaps in MST. However, locked mode cease to travel around the torus;while unlocked mode keeps traveling without a change in the energy, making it hard to determine an exact set of conditions to predict locking/unlocking behaviour. The significant key model parameters determined by LR analysis are shown to improve the Sine-Gordon model’s ability to determine the locking/unlocking of magnetohydrodyamic (MHD) modes. The LR analysis of measured variables provides high confidence in anticipating locking versus unlocking of slinky mode proven by relational comparisons between simulations and the experimentally measured motion of the slinky mode in MST. 展开更多
关键词 Madison Symmetric Torus (MST) Magnetohydrodyamic (MHD) SINE-GORDON TOROIDAL Dynamic modelling Reversed Field Pinch (RFP) logistical regression
下载PDF
Improved Logistic Regression Algorithm Based on Kernel Density Estimation for Multi-Classification with Non-Equilibrium Samples
3
作者 Yang Yu Zeyu Xiong +1 位作者 Yueshan Xiong Weizi Li 《Computers, Materials & Continua》 SCIE EI 2019年第7期103-117,共15页
Logistic regression is often used to solve linear binary classification problems such as machine vision,speech recognition,and handwriting recognition.However,it usually fails to solve certain nonlinear multi-classifi... Logistic regression is often used to solve linear binary classification problems such as machine vision,speech recognition,and handwriting recognition.However,it usually fails to solve certain nonlinear multi-classification problem,such as problem with non-equilibrium samples.Many scholars have proposed some methods,such as neural network,least square support vector machine,AdaBoost meta-algorithm,etc.These methods essentially belong to machine learning categories.In this work,based on the probability theory and statistical principle,we propose an improved logistic regression algorithm based on kernel density estimation for solving nonlinear multi-classification.We have compared our approach with other methods using non-equilibrium samples,the results show that our approach guarantees sample integrity and achieves superior classification. 展开更多
关键词 logistic regression multi-classification kernel function density estimation NON-EQUILIBRIUM
下载PDF
Composition Analysis and Identification of Ancient Glass Products Based on L1 Regularization Logistic Regression
4
作者 Yuqiao Zhou Xinyang Xu Wenjing Ma 《Applied Mathematics》 2024年第1期51-64,共14页
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste... In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics. 展开更多
关键词 Glass Composition L1 Regularization logistic regression model K-Means Clustering Analysis Elbow Rule Parameter Verification
下载PDF
Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed,Gansu Province,China 被引量:20
5
作者 DU Guo-liang ZHANG Yong-shuang +2 位作者 IQBAL Javed YANG Zhi-hua YAO Xin 《Journal of Mountain Science》 SCIE CSCD 2017年第2期249-268,共20页
Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence... Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups,(i) training dataset and(ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages,distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation. 展开更多
关键词 Landslide susceptibility Integrated model Information value method logistic regression Bailongjiang watershed
下载PDF
Evaluation of Inference Adequacy in Cumulative Logistic Regression Models:An Empirical Validation of ISW-Ridge Relationships 被引量:3
6
作者 Cheng-Wu CHEN Hsien-Chueh Peter YANG +2 位作者 Chen-Yuan CHEN Alex Kung-Hsiung CHANG Tsung-Hao CHEN 《China Ocean Engineering》 SCIE EI 2008年第1期43-56,共14页
Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ri... Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ridge height and potential energy during wave-ridge interaction with a binary and cumulative logistic regression model. In testing the Global Null Hypothesis, all values are p 〈0.001, with three statistical methods, such as Likelihood Ratio, Score, and Wald. While comparing with two kinds of models, tests values obtained by cumulative logistic regression models are better than those by binary logistic regression models. Although this study employed cumulative logistic regression model, three probability functions p^1, p^2 and p^3, are utilized for investigating the weighted influence of factors on wave reflection. Deviance and Pearson tests are applied to cheek the goodness-of-fit of the proposed model. The analytical results demonstrated that both ridge height (X1 ) and potential energy (X2 ) significantly impact (p 〈 0. 0001 ) the amplitude-based refleeted rate; the P-values for the deviance and Pearson are all 〉 0.05 (0.2839, 0.3438, respectively). That is, the goodness-of-fit between ridge height ( X1 ) and potential energy (X2) can further predict parameters under the scenario of the best parsimonious model. Investigation of 6 predictive powers ( R2, Max-rescaled R^2, Sorners' D, Gamma, Tau-a, and c, respectively) indicate that these predictive estimates of the proposed model have better predictive ability than ridge height alone, and are very similar to the interaction of ridge height and potential energy. It can be concluded that the goodness-of-fit and prediction ability of the cumulative logistic regression model are better than that of the binary logistic regression model. 展开更多
关键词 binary logistic regression cumulative logistic regression model GOODNESS-OF-FIT internal solitary wave amplitude-based transmission rate
下载PDF
Application of a Novel Method for Machine Performance Degradation Assessment Based on Gaussian Mixture Model and Logistic Regression 被引量:3
7
作者 LIU Wenbin ZHONG Xin +2 位作者 LEE Jay LIAO Linxia ZHOU Min 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期879-884,共6页
The currently prevalent machine performance degradation assessment techniques involve estimating a machine's current condition based upon the recognition of indications of failure features,which entail complete data ... The currently prevalent machine performance degradation assessment techniques involve estimating a machine's current condition based upon the recognition of indications of failure features,which entail complete data collected in different conditions.However,failure data are always hard to acquire,thus making those techniques hard to be applied.In this paper,a novel method which does not need failure history data is introduced.Wavelet packet decomposition(WPD) is used to extract features from raw signals,principal component analysis(PCA) is utilized to reduce feature dimensions,and Gaussian mixture model(GMM) is then applied to approximate the feature space distributions.Single-channel confidence value(SCV) is calculated by the overlap between GMM of the monitoring condition and that of the normal condition,which can indicate the performance of single-channel.Furthermore,multi-channel confidence value(MCV),which can be deemed as the overall performance index of multi-channel,is calculated via logistic regression(LR) and that the task of decision-level sensor fusion is also completed.Both SCV and MCV can serve as the basis on which proactive maintenance measures can be taken,thus preventing machine breakdown.The method has been adopted to assess the performance of the turbine of a centrifugal compressor in a factory of Petro-China,and the result shows that it can effectively complete this task.The proposed method has engineering significance for machine performance degradation assessment. 展开更多
关键词 performance degradation assessment Gaussian mixture model logistic regression proactive maintenance sensor fusion
下载PDF
A Review of the Logistic Regression Model with Emphasis on Medical Research 被引量:8
8
作者 Ernest Yeboah Boateng Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2019年第4期190-207,共18页
This study explored and reviewed the logistic regression (LR) model, a multivariable method for modeling the relationship between multiple independent variables and a categorical dependent variable, with emphasis on m... This study explored and reviewed the logistic regression (LR) model, a multivariable method for modeling the relationship between multiple independent variables and a categorical dependent variable, with emphasis on medical research. Thirty seven research articles published between 2000 and 2018 which employed logistic regression as the main statistical tool as well as six text books on logistic regression were reviewed. Logistic regression concepts such as odds, odds ratio, logit transformation, logistic curve, assumption, selecting dependent and independent variables, model fitting, reporting and interpreting were presented. Upon perusing the literature, considerable deficiencies were found in both the use and reporting of LR. For many studies, the ratio of the number of outcome events to predictor variables (events per variable) was sufficiently small to call into question the accuracy of the regression model. Also, most studies did not report on validation analysis, regression diagnostics or goodness-of-fit measures;measures which authenticate the robustness of the LR model. Here, we demonstrate a good example of the application of the LR model using data obtained on a cohort of pregnant women and the factors that influence their decision to opt for caesarean delivery or vaginal birth. It is recommended that researchers should be more rigorous and pay greater attention to guidelines concerning the use and reporting of LR models. 展开更多
关键词 logistic regression model Validation Analysis GOODNESS-OF-FIT Measures Odds RATIO LIKELIHOOD RATIO TEST Hosmer-Lemeshow TEST Wald Statistic MEDICAL RESEARCH
下载PDF
Regional Integrated Meteorological Forecasting and Warning Model for Geological Hazards Based on Logistic Regression 被引量:1
9
作者 XU Jing YANG Chi ZHANG Guoping 《Wuhan University Journal of Natural Sciences》 CAS 2007年第4期638-644,共7页
Information model is adopted to integrate factors of various geosciences to estimate the susceptibility of geological hazards. Further combining the dynamic rainfall observations, Logistic regression is used for model... Information model is adopted to integrate factors of various geosciences to estimate the susceptibility of geological hazards. Further combining the dynamic rainfall observations, Logistic regression is used for modeling the probabilities of geological hazard occurrences, upon which hierarchical warnings for rainfall-induced geological hazards are produced. The forecasting and warning model takes numerical precipitation forecasts on grid points as its dynamic input, forecasts the probabilities of geological hazard occurrences on the same grid, and translates the results into likelihoods in the form of a 5-level hierarchy. Validation of the model with observational data for the year 2004 shows that 80% of the geological hazards of the year have been identified as "likely enough to release warning messages". The model can satisfy the requirements of an operational warning system, thus is an effective way to improve the meteorological warnings for geological hazards. 展开更多
关键词 geological hazard information model logistic regression RAINFALL spatial analysis
下载PDF
The assessment of the outliers of logistic regression model and its clinical application 被引量:1
10
作者 易东 许汝福 +1 位作者 张蔚 尹全焕 《Journal of Medical Colleges of PLA(China)》 CAS 1995年第1期61-62,66,共3页
On the basis of the newly developed regression diagnostic analysis, the diagnostic method with the assessment of the outliers of the logistic regression model was set up and it was used to analyze the prognosis of the... On the basis of the newly developed regression diagnostic analysis, the diagnostic method with the assessment of the outliers of the logistic regression model was set up and it was used to analyze the prognosis of the patients with acute lymphatic leukemia. 展开更多
关键词 OUTLIER logistic model leukemia LYMPHOBLASTIC prognosis regression analysis
下载PDF
A New Aware-Context Collaborative Filtering Approach by Applying Multivariate Logistic Regression Model into General User Pattern 被引量:1
11
作者 Loc Nguyen 《Journal of Data Analysis and Information Processing》 2016年第3期124-131,共8页
Traditional collaborative filtering (CF) does not take into account contextual factors such as time, place, companion, environment, etc. which are useful information around users or relevant to recommender application... Traditional collaborative filtering (CF) does not take into account contextual factors such as time, place, companion, environment, etc. which are useful information around users or relevant to recommender application. So, recent aware-context CF takes advantages of such information in order to improve the quality of recommendation. There are three main aware-context approaches: contextual pre-filtering, contextual post-filtering and contextual modeling. Each approach has individual strong points and drawbacks but there is a requirement of steady and fast inference model which supports the aware-context recommendation process. This paper proposes a new approach which discovers multivariate logistic regression model by mining both traditional rating data and contextual data. Logistic model is optimal inference model in response to the binary question “whether or not a user prefers a list of recommendations with regard to contextual condition”. Consequently, such regression model is used as a filter to remove irrelevant items from recommendations. The final list is the best recommendations to be given to users under contextual information. Moreover the searching items space of logistic model is reduced to smaller set of items so-called general user pattern (GUP). GUP supports logistic model to be faster in real-time response. 展开更多
关键词 Aware-Context Collaborative Filtering logistic regression model
下载PDF
Asymptomatic Distribution of Goodness-of-Fit Tests in Logistic Regression Model
12
作者 Nuri H. Salem Badi 《Open Journal of Statistics》 2017年第3期434-445,共12页
The logistic regression model has been become commonly used to study the association between a binary response variable;it is widespread application rests on its easy application and interpretation. The subject of ass... The logistic regression model has been become commonly used to study the association between a binary response variable;it is widespread application rests on its easy application and interpretation. The subject of assessment of goodness-of-fit in logistic regression model has attracted the attention of many scientists and researchers. Goodness-of-fit tests are methods to determine the suitability of the fitted model. Many of methods proposed and discussed for assessing goodness-of fit in logistic regression model, however, the asymptotic distribution of goodness-of-fit statistics are less examine, it is need more investigated. This work, will focus on assessing the behavior of asymptotic distribution of goodness-of-fit tests, also make comparison between global goodness-of-fit tests, and evaluate it by simulation. 展开更多
关键词 logistic regression model GOODNESS-OF-FIT TESTS
下载PDF
Simulation Program to Determine Sample Size and Power for a Multiple Logistic Regression Model with Unspecified Covariate Distributions
13
作者 Naoko Kumagai Kohei Akazawa +2 位作者 Hiromi Kataoka Yutaka Hatakeyama Yoshiyasu Okuhara 《Health》 2014年第21期2973-2998,共26页
Binary logistic regression models are commonly used to assess the association between outcomes and covariates. Many covariates are inherently continuous, and have a variety of distributions, including those that are h... Binary logistic regression models are commonly used to assess the association between outcomes and covariates. Many covariates are inherently continuous, and have a variety of distributions, including those that are heavily skewed to the left or right. Existing theoretical formulas, criteria, and simulation programs cannot accurately estimate the sample size and power of non-standard distributions. Therefore, we have developed a simulation program that uses Monte Carlo methods to estimate the exact power of a binary logistic regression model. This power calculation can be used for distributions of any shape and covariates of any type (continuous, ordinal, and nominal), and can account for nonlinear relationships between covariates and outcomes. For illustrative purposes, this simulation program is applied to real data obtained from a study on the influence of smoking on 90-day outcomes after acute atherothrombotic stroke. Our program is applicable to all effect sizes and makes it possible to apply various statistical methods, logistic regression and related simulations such as Bayesian inference with some modifications. 展开更多
关键词 logistic regression model MONTE Carlo Simulation Non-Standard DISTRIBUTIONS Nonlinear POWER SAMPLE Size Skewed Distribution
下载PDF
Incorporating the Multinomial Logistic Regression in Vehicle Crash Severity Modeling: A Detailed Overview
14
作者 Azad Abdulhafedh 《Journal of Transportation Technologies》 2017年第3期279-303,共25页
Multinomial logistic regression (MNL) is an attractive statistical approach in modeling the vehicle crash severity as it does not require the assumption of normality, linearity, or homoscedasticity compared to other a... Multinomial logistic regression (MNL) is an attractive statistical approach in modeling the vehicle crash severity as it does not require the assumption of normality, linearity, or homoscedasticity compared to other approaches, such as the discriminant analysis which requires these assumptions to be met. Moreover, it produces sound estimates by changing the probability range between 0.0 and 1.0 to log odds ranging from negative infinity to positive infinity, as it applies transformation of the dependent variable to a continuous variable. The estimates are asymptotically consistent with the requirements of the nonlinear regression process. The results of MNL can be interpreted by both the regression coefficient estimates and/or the odd ratios (the exponentiated coefficients) as well. In addition, the MNL can be used to improve the fitted model by comparing the full model that includes all predictors to a chosen restricted model by excluding the non-significant predictors. As such, this paper presents a detailed step by step overview of incorporating the MNL in crash severity modeling, using vehicle crash data of the Interstate I70 in the State of Missouri, USA for the years (2013-2015). 展开更多
关键词 MULTINOMIAL logistic regression ODD Ratio The INDEPENDENCE of Irrelevant Alternatives The Hausman Specification TEST The Hosmer-Lemeshow TEST Pseudo R SQUARES Crash SEVERITY models
下载PDF
Identifying the dependency pattern of daily rainfall of Dhaka station in Bangladesh using Markov chain and logistic regression model
15
作者 Mina Mahbub Hossain Sayedul Anam 《Agricultural Sciences》 2012年第3期385-391,共7页
Bangladesh is a subtropical monsoon climate characterized by wide seasonal variations in rainfall, moderately warm temperatures, and high humidity. Rainfall is the main source of irrigation water everywhere in the Ban... Bangladesh is a subtropical monsoon climate characterized by wide seasonal variations in rainfall, moderately warm temperatures, and high humidity. Rainfall is the main source of irrigation water everywhere in the Bangladesh where the inhabitants derive their income primarily from farming. Stochastic rainfall models were concerned with the occurrence of wet day and depth of rainfall for different regions to model the daily occurrence of rainfall and achieved satisfactory results around the world. In connection to the Markov chain of different order, logistic regression is conducted to visualize the dependence of current rainfall upon the rainfall of previous two-time period. It had been shown that wet day of the previous two time period compared to the dry day of previous two time period influences positively the wet day of current time period, that is the dependency of dry-wet spell for the occurrence of rain in the rainy season from April to September in the study area. Daily data are collected from meteorological department of about 26 years on rainfall of Dhaka station during the period January 1985-August 2011 to conduct the study. The test result shows that the occurrence of rainfall follows a second order Markov chain and logistic regression also tells that dry followed by dry and wet followed by wet is more likely for the rainfall of Dhaka station and also the model could perform adequately for many applications of rainfall data satisfactorily. 展开更多
关键词 Characteristics of RAINFALL in BANGLADESH Stochastic models MARKOV Chain Mode logistic regression model Akaike’s Information Criterion (AIC)
下载PDF
Analysis of gender's role on voluntary tendency of potential/active volunteers via logistic regression modeling: The case of Canakkale Onsekiz Mart University
16
作者 Ayten Akatay 《Chinese Business Review》 2010年第8期55-63,共9页
From economy to political administrations, education to health, environment to human rights, many problems we met have gained a global importance in recent days. Existing state systems, political parties and nation st... From economy to political administrations, education to health, environment to human rights, many problems we met have gained a global importance in recent days. Existing state systems, political parties and nation states are not adequate for solving these problems in question effectively on their own. Not only governments and local authorities but also voluntary organizations based on completely voluntary activities have significant roles in solving these problems. Effective performance of voluntary organizations depends on increasing volunteer population. Individuals' attitudes or their perception of understanding volunteerism play an important role in their contributions to voluntary organizations. The aim of this study is to determine individuals' ways of perceiving volunteerism concept and their tendency towards it. Furthermore, differences between men and women's perception and attitudes towards volunteerism concept have been examined. For this purpose, a survey has been conducted over university students of bachelor's degree. Tendencies and attitudes towards volunteerism compared to gender differences have been tested via logistic regression method. Research results reveal that women take part in voluntary activities more than men and women perceive volunteerism as "a political position" while men perceive volunteerism as "a learning atmosphere and learning process". 展开更多
关键词 VOLUNTEERISM volunteerism tendency volunteerism perception potential/active volunteers logistic regression modeling
下载PDF
Landslide-Dammed Mapping and Logistic Regression Modeling Using GIS and R Statistical Software in the Northeast Afghanistan
17
作者 Mohammad Kazem Naseri Dongshik Kang 《Journal of Electrical Engineering》 2016年第4期165-172,共8页
A complex terrain and topography resulted in an enormous landslide-dammed area northeast of Afghanistan. Moreover, debris, rock avalanches, and landslides occurrences are the primary source of lakes created within the... A complex terrain and topography resulted in an enormous landslide-dammed area northeast of Afghanistan. Moreover, debris, rock avalanches, and landslides occurrences are the primary source of lakes created within the area. Recently, instances have increased because of the high displacement and mass movement by glacial and seismic activities. In this study, using GIS and R statistical software, we performed a logistic regression modeling in order to map and predict the probability of landslides-dammed occurrences. Totally, 361 lakes were mapped using Google Earth historical imagery. This total was divided into 253 (70%) lakes for modeling and 801 (30%) lakes for the model validation. They were randomly selected by creating a fishnet for the study area using Arc toolbox in GIS. Four independent variables that are mostly contributed to landslide-dammed occurrences consisting of slope angles, relief classes, distances to major water sources and earthquake epicenters, were extracted from DEM (digital elevation model) data using 85-meter resolution. The result is a grid map that classified the area into Low (16,834.98 km2), Medium (2,217.302 kin:) and High (2,013.55 km2) vulnerability to landslide-dammed occurrences. Overall, the model result has been validated by using a ROC (receiver operator characteristic) curve available in SPSS software. The model validation showed a 95.1 percent prediction accuracy that is considered satisfactory. 展开更多
关键词 Landslide-dammed area mapping Northeast Afghanistan logistic regression modeling GIS and R.
下载PDF
Predictive Modeling for Analysis of Coronavirus Symptoms Using Logistic Regression
18
作者 Anatoli Nachev 《Journal of Mechanics Engineering and Automation》 2023年第4期93-99,共7页
This paper presents a case study on the IPUMS NHIS database,which provides data from censuses and surveys on the health of the U.S.population,including data related to COVID-19.By addressing gaps in previous studies,w... This paper presents a case study on the IPUMS NHIS database,which provides data from censuses and surveys on the health of the U.S.population,including data related to COVID-19.By addressing gaps in previous studies,we propose a machine learning approach to train predictive models for identifying and measuring factors that affect the severity of COVID-19 symptoms.Our experiments focus on four groups of factors:demographic,socio-economic,health condition,and related to COVID-19 vaccination.By analysing the sensitivity of the variables used to train the models and the VEC(variable effect characteristics)analysis on the variable values,we identify and measure importance of various factors that influence the severity of COVID-19 symptoms. 展开更多
关键词 COVID-19 supervised learning modelS CLASSIFICATION logistic regression.
下载PDF
Choices of medical institutions and associated factors in older patients with multimorbidity in stabilization period in China:A study based on logistic regression and decision tree model
19
作者 Xiaoran Wang Dan Zhang 《Health Care Science》 2023年第6期359-369,共11页
Background:As China's population ages,its disease spectrum is changing,and the coexistence of multiple chronic diseases has become the norm with respect to the health status of its elderly population.However,the h... Background:As China's population ages,its disease spectrum is changing,and the coexistence of multiple chronic diseases has become the norm with respect to the health status of its elderly population.However,the health institution choices of older patients with multimorbidity in stabilization period remains underresearched.This study investigate the factors influencing the choices of older patients with multimorbidity to provide references for the rational allocation of healthcare resources.Methods:A multistage,stratified,whole-group random-sampling method was used to select eligible older patients from September to December of 2022 who attended the Community Health Service Center of Guangdong Province.We adopted a self-designed questionnaire to collect patients'general,diseaserelated,social-support information,their intention to choose a healthcare provider.A binary logistic regression and decision tree model based on the Chi-squared automatic interaction detector algorithm were implemented to analyze the associated factors involved.Results:A total of 998 patients in stabilization period were included in the study,of which 593(59.42%)chose hospital and 405(40.58%)chose primary care.Our binary logistic regression results revealed that age,sex,individual average annual income,educational level,self-reported health status,activities of daily living,alcohol consumption,family doctor contracting,and family supervision of medication or exercise were the principal factors influencing the choice of medical institutions for older patients with multimorbidity(p<0.05).The decision-tree model reflected three levels and 11 nodes,and we screened a total of four influencing factors:activities of daily living,age,a family doctor contract,and patient sex.The data showed that the logistic regression model possessed an accuracy of 72.9%and that the decision tree model exhibited an accuracy of 68.7%.Prediction using the binary logistic regression was thus statistically superior to the categorical decision-tree model based on the Chisquared automatic interaction detector algorithm(Z=3.238,p=0.001).Conclusion:More than half of older patients with multimorbidity in stabilization period chose hospitals for healthcare.Efforts should be made to improve the quality of healthcare services and increase the medical contracting rate and recognition of family doctors so as to attract older patients with multimorbidity to primary medical institutions. 展开更多
关键词 comorbidity of chronic disease ELDERLY choice of medical institution logistic regression model decision-tree model
下载PDF
To set up a logistic regression prediction model for hepatotoxicity of Chinese herbal medicines based on the efficacy of Chinese herbal medicines
20
作者 Tian-Hao Li Hui-Jie Shi +5 位作者 Peng Qing Li-Sheng Peng Shui-Yu Liao Ze-Wen Ding Hong-Jie Liu Zhe Zhang 《TMR Pharmacology Research》 2021年第1期35-61,共27页
In our previous research,a logistic regression prediction model for hepatotoxicity of Chinese herbal medicines based on the four properties,five flavors and channel tropism has been successfully established.However,co... In our previous research,a logistic regression prediction model for hepatotoxicity of Chinese herbal medicines based on the four properties,five flavors and channel tropism has been successfully established.However,could Chinese herbal medicines efficacy also be applied to predict the hepatotoxicity of Chinese herbal medicines?Therefore,a logistic regression prediction model for hepatotoxicity of Chinese herbal medicines based on Chinese herbal medicines efficacy has been tentatively set up to study the correlations of hepatotoxic and nonhepatotoxic Chinese herbal medicines with efficacy by using a chi-square test for two-way unordered categorical data.Logistic regression prediction model was established and the accuracy of the prediction by this model was evaluated.It has been found that the hepatotoxicity and nonhepatotoxicity of Chinese herbal medicines were weakly related to the efficacy,and the coefficient was 0.295.There were 20 variables from Chinese herbal medicines efficacy analyzed with unconditional logistic regression,and 6 variables,rectifying Qi and relieving pain,clearing heat and disinhibiting dampness,invigorating blood and stopping pain,invigorating blood and relieving swelling,killing worms and relieving fright were chosen to establish the logistic regression prediction model,with the optimal cutoff value being 0.250.Dissipating cold and relieving pain(DCRP),clearing heat and disinhibiting dampness,invigorating blood and relieving pain(IBRP),invigorating blood and relieving swelling,killing worms,and relieving fright were the variables to affect the hepatotoxicity and the established logistic regression prediction model had predictive power for hepatotoxicity of Chinese herbal medicines to a certain degree. 展开更多
关键词 Efficacy of Chinese herbal medicines Hepatotoxicity prediction logistic regression prediction model
下载PDF
上一页 1 2 129 下一页 到第
使用帮助 返回顶部