In this paper,a typical experiment is carried out based on a high-resolution air-sea coupled model,namely,the coupled ocean-atmosphere-wave-sediment transport(COAWST)model,on both heterogeneous many-core(SW)and homoge...In this paper,a typical experiment is carried out based on a high-resolution air-sea coupled model,namely,the coupled ocean-atmosphere-wave-sediment transport(COAWST)model,on both heterogeneous many-core(SW)and homogenous multicore(Intel)supercomputing platforms.We construct a hindcast of Typhoon Lekima on both the SW and Intel platforms,compare the simulation results between these two platforms and compare the key elements of the atmospheric and ocean modules to reanalysis data.The comparative experiment in this typhoon case indicates that the domestic many-core computing platform and general cluster yield almost no differences in the simulated typhoon path and intensity,and the differences in surface pressure(PSFC)in the WRF model and sea surface temperature(SST)in the short-range forecast are very small,whereas a major difference can be identified at high latitudes after the first 10 days.Further heat budget analysis verifies that the differences in SST after 10 days are mainly caused by shortwave radiation variations,as influenced by subsequently generated typhoons in the system.These typhoons generated in the hindcast after the first 10 days attain obviously different trajectories between the two platforms.展开更多
A cosimulation platform was established for distributed control systems via heterogeneous network,which integrated OPNET and Matlab/Simulink.The communication node in this cosimulation platform was built based on OSI ...A cosimulation platform was established for distributed control systems via heterogeneous network,which integrated OPNET and Matlab/Simulink.The communication node in this cosimulation platform was built based on OSI model and UDP protocol,which was adopted as the transportation layer protocol.Data exchanged between the data source module and the specified node.It was fulfilled by revising the corresponding protocol modules based on the characteristics of UDP.The effectiveness of the constructed simulation platform was demonstrated by a numerical example.展开更多
无人异构集群相较于单一类型、单一个体的无人平台,能够完成更为复杂的任务,同时对严苛战场环境有着更高的适应度.在无人异构集群协同执行任务时,任务分配是至关重要的环节,需要考虑异构无人平台和任务的多种约束和目标.传统的任务分配...无人异构集群相较于单一类型、单一个体的无人平台,能够完成更为复杂的任务,同时对严苛战场环境有着更高的适应度.在无人异构集群协同执行任务时,任务分配是至关重要的环节,需要考虑异构无人平台和任务的多种约束和目标.传统的任务分配方法分配效率低且难以处理大规模复杂任务.联盟博弈通过形成由若干参与者组成的联盟,根据个体的属性、偏好对群体进行划分,从而实现个体以及群体利益的最大化.本文以无人异构集群任务分配为背景,研究了基于改进联盟博弈算法的最优分配策略,基于可能的战场环境设计了模拟任务场景并完成实验验证.首先,考虑异构平台在任务中的初始位置、速度、携带资源以及个体声誉等因素,建立了基于空间自适应博弈(Spatial adaptive play algorithm, SAP)的联盟博弈的任务分配算法模型.其次,基于任务场景,搭建了任务所需的软件与硬件平台.最后,针对模拟的战场环境,对所提算法及搭建的异构无人集群平台进行了实验验证.验证结果表明,在异构无人集群平台重分配的任务背景下,本平台能综合考虑战场态势,寻找最优的任务分配方式,协调各作战单位完成任务目标.展开更多
基金This work is supported by the National Key Research and Development Plan program of the Ministry of Science and Technology of China(No.2016YFB0201100)Additionally,this work is supported by the National Laboratory for Marine Science and Technology(Qingdao)Major Project of the Aoshan Science and Technology Innovation Program(No.2018ASKJ01-04)the Open Fundation of Key Laboratory of Marine Science and Numerical Simulation,Ministry of Natural Resources(No.2021-YB-02).
文摘In this paper,a typical experiment is carried out based on a high-resolution air-sea coupled model,namely,the coupled ocean-atmosphere-wave-sediment transport(COAWST)model,on both heterogeneous many-core(SW)and homogenous multicore(Intel)supercomputing platforms.We construct a hindcast of Typhoon Lekima on both the SW and Intel platforms,compare the simulation results between these two platforms and compare the key elements of the atmospheric and ocean modules to reanalysis data.The comparative experiment in this typhoon case indicates that the domestic many-core computing platform and general cluster yield almost no differences in the simulated typhoon path and intensity,and the differences in surface pressure(PSFC)in the WRF model and sea surface temperature(SST)in the short-range forecast are very small,whereas a major difference can be identified at high latitudes after the first 10 days.Further heat budget analysis verifies that the differences in SST after 10 days are mainly caused by shortwave radiation variations,as influenced by subsequently generated typhoons in the system.These typhoons generated in the hindcast after the first 10 days attain obviously different trajectories between the two platforms.
基金National Natural Science Foundation of China(No.61573237)Natural Science Foundation of Shanghai,China(No.13ZR1416300)
文摘A cosimulation platform was established for distributed control systems via heterogeneous network,which integrated OPNET and Matlab/Simulink.The communication node in this cosimulation platform was built based on OSI model and UDP protocol,which was adopted as the transportation layer protocol.Data exchanged between the data source module and the specified node.It was fulfilled by revising the corresponding protocol modules based on the characteristics of UDP.The effectiveness of the constructed simulation platform was demonstrated by a numerical example.
文摘无人异构集群相较于单一类型、单一个体的无人平台,能够完成更为复杂的任务,同时对严苛战场环境有着更高的适应度.在无人异构集群协同执行任务时,任务分配是至关重要的环节,需要考虑异构无人平台和任务的多种约束和目标.传统的任务分配方法分配效率低且难以处理大规模复杂任务.联盟博弈通过形成由若干参与者组成的联盟,根据个体的属性、偏好对群体进行划分,从而实现个体以及群体利益的最大化.本文以无人异构集群任务分配为背景,研究了基于改进联盟博弈算法的最优分配策略,基于可能的战场环境设计了模拟任务场景并完成实验验证.首先,考虑异构平台在任务中的初始位置、速度、携带资源以及个体声誉等因素,建立了基于空间自适应博弈(Spatial adaptive play algorithm, SAP)的联盟博弈的任务分配算法模型.其次,基于任务场景,搭建了任务所需的软件与硬件平台.最后,针对模拟的战场环境,对所提算法及搭建的异构无人集群平台进行了实验验证.验证结果表明,在异构无人集群平台重分配的任务背景下,本平台能综合考虑战场态势,寻找最优的任务分配方式,协调各作战单位完成任务目标.