The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stabili...The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stability,scattered vertical distribution,and a wide distribution range.This study selected the Enping Formation of the ZhuⅠDepression in the northern section of the South China Sea as an example to determine the macro-control factors of the development of the Paleogene coal seam groups.An analysis was carried out on the influencing effects and patterns of the astronomical cycles related to the development of the thin coal seam groups in the region.A floating astronomical time scale of the Enping Formation was established,and the sedimentary time limit of the Enping Formation was determined to be approximately 6.15 Ma±.In addition,the cyclostratigraphy analysis results of the natural gamma-ray data of Well XJ in the Enping Formation of the Xijiang Sag revealed that the development of the thin coal seams had probably been affected by short eccentricity and precession factors.The formation process of coal seams was determined to have been affected by high seasonal contrast,precipitation,and insolation.During the periods with high values of short eccentricity,the seasonal contrasts tended to be high.During those periods,fluctuations in the precession controls resulted in periodic volume changes in precipitation and insolation of the region,resulting in the development of thin coal seams.It was also found that the periods with low precession were the most conducive to coal seam development.On that basis,combined with such factors as sedimentary environmental conditions conducive to the development of thin coal seam groups,this study established a theoretical model of the comprehensive influences of short eccentricity and precession on the development and distribution of Paleogene thin coal seam groups in offshore lacustrine basins.The patterns of the Paleogene astronomical periods and paleoclimate evolution,along with the control factors which impacted the development of thin coal seam groups in offshore lacustrine basins,were revealed.展开更多
Strip mining is one of the efficient measures to control surface subsidence and mining damage. However, the researches on the laws of the geological mining factors to upper and lower pillar's stability are still d...Strip mining is one of the efficient measures to control surface subsidence and mining damage. However, the researches on the laws of the geological mining factors to upper and lower pillar's stability are still deficient in multi-coal seam strip mining at present. Based on the three dimension fast Lagrangian analysis of continua (short for FLAC3D) numerical simulation software, the laws of the stress increasing coefficient on the coal pillar and its stability were systematically studied for different depths, different mining widths, different interlayer spacings, different mining thicknesses, different properties of interstratified rock and the spacial relations of the upper and lower pillars in vertical alignment in multi-coal seam strip mining. The function relation between the stress increasing coefficient of upper and lower pillars with the mining depth, mining widths, interlayer spacing, mining thickness, property of interstratified rock and the spatial relationship were obtained.展开更多
A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geogr...A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geographical distribution,dynamic development process,and failure mechanism of these ground fissures by employing field monitoring,numerical simulation,and theoretical analysis.The findings demonstrate that ground fissure development has an obvious feature of subregion,and its geographical distribution is significantly affected by topography.Tensile type,open type,and stepped type are three different categories of ground fissure.Ground fissures emerge dynamically as the panel advances,and they typically develop with a distance of less than periodic weighting step distance in advance of panel advancing position.Ground fissures present the dynamic development feature,temporary fissure has the ability of self-healing.The dynamic development process of ground fissure with closed-distance coal seam repeated mining is expounded,and the development scale is a dynamic development stage of“closure→expansion→stabilized”on the basis of the original development scale.From the perspective of topsoil deformation,the computation model considering two points movement vectors towards two directions of the gob and the ground surface is established,the development criterion considering the critical deformation value of topsoil is obtained.The mechanical model of hinged structure of inclined body is proposed to clarify the ground fissure development,and the interaction between slope activity and ground fissure development is expounded.These research results fulfill the gap of ground fissures about development regularity and formation mechanism,and can contribute to ground fissure prevention and treatment with Karst landform.展开更多
To predict joint development characteristics of coal seams, joint characteristics of rock seams from 88field stations were observed and comparisons were made between joint characteristics of coal and rock seams at 10 ...To predict joint development characteristics of coal seams, joint characteristics of rock seams from 88field stations were observed and comparisons were made between joint characteristics of coal and rock seams at 10 coal outcrops. Additionally, detailed joint measurements of underground coal seams were taken at two coal mines. This study investigated the effects of seam thickness, lithology, and structure on joint development and established the relationship between joint development of coal and rock seams, which allowed predictions of predominant joint densities for the No.5 coal seam in the southeastern margin of the Ordos basin. The results show that outcrop and underground coal seams exhibit the same joint systems as rock seams. The joints are mainly upright. Predominant joints strike 55° on average, followed by joints striking 320°. The joint density of the coal seam is 18.7–22.5 times that of the sandstone seam at the same thickness. The predominant joint density of the No.5 coal seam, controlled by the structure, is 4–20 joints per meter. Joint densities exhibit high values at intersecting areas of faults and folds and decrease values in structurally stable areas. The permeability increases exponentially with increasing density of the predominant joints.展开更多
It is an important part of green mining to control the disasters of coal mining which have caused irreversible damages to buildings and ecological environment. Strip mining is one of the efficient measures to control ...It is an important part of green mining to control the disasters of coal mining which have caused irreversible damages to buildings and ecological environment. Strip mining is one of the efficient measures to control surface subsidence and mining damage. However, the research on the laws of the surface subsidence are still deficient in multi-coal seam strip mining at present. Based on the Fast Lagrangian Analysis of Continua(short for FLAC3D) numerical simulation software, the laws of the surface subsidence and horizontal movement were systematically studied for different depths, different mining widths, different distances between seams, different mining thickness, different parameters between seams and the special relations of the upper pillar and the lower pillar in the vertical direction in multi-seam strip mining. The function relation between the maximum subsidence and the maximum horizontal movement with the depth, the mining width, the seam distance, mining thickness, different parameters between seams and the partial offset are summarized respectively. Finally the formula integrating the surface maximum subsidence value and the maximum horizontal movement was deduced. The results can be used for reference theory and measure in forecasting the surface displacement in multi-coal seam strip mining.展开更多
基金The Scientific Research Project under contract No.CCL2021RCPS172KQNthe Formation Mechanism and Distribution Prediction of Cenozoic Marine Source rocks in Qiongdongnan and Pearl River Mouth Basin under contract No.2021-KT-YXKY01+3 种基金the Resource Potential,Accumulation Mechanism and Breakthrough Direction of Potential Oil-rich Sags in Offshore Basins of China under contract No.2021-KT-YXKY-03the National Natural Science Foundation of China(NSFC)under contract No.42372132the Open Foundation of Hebei Provincial Key Laboratory of Resource Survey and Researchthe National Natural Science Foundation of China(NSFC)under contract Nos 42072188,42272205。
文摘The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stability,scattered vertical distribution,and a wide distribution range.This study selected the Enping Formation of the ZhuⅠDepression in the northern section of the South China Sea as an example to determine the macro-control factors of the development of the Paleogene coal seam groups.An analysis was carried out on the influencing effects and patterns of the astronomical cycles related to the development of the thin coal seam groups in the region.A floating astronomical time scale of the Enping Formation was established,and the sedimentary time limit of the Enping Formation was determined to be approximately 6.15 Ma±.In addition,the cyclostratigraphy analysis results of the natural gamma-ray data of Well XJ in the Enping Formation of the Xijiang Sag revealed that the development of the thin coal seams had probably been affected by short eccentricity and precession factors.The formation process of coal seams was determined to have been affected by high seasonal contrast,precipitation,and insolation.During the periods with high values of short eccentricity,the seasonal contrasts tended to be high.During those periods,fluctuations in the precession controls resulted in periodic volume changes in precipitation and insolation of the region,resulting in the development of thin coal seams.It was also found that the periods with low precession were the most conducive to coal seam development.On that basis,combined with such factors as sedimentary environmental conditions conducive to the development of thin coal seam groups,this study established a theoretical model of the comprehensive influences of short eccentricity and precession on the development and distribution of Paleogene thin coal seam groups in offshore lacustrine basins.The patterns of the Paleogene astronomical periods and paleoclimate evolution,along with the control factors which impacted the development of thin coal seam groups in offshore lacustrine basins,were revealed.
基金Project(KLM200909)supported by Key Laboratory of Mine Spatial Information Technologies(Henan Polytechnic University,Henan Bureau of Surveying & Mapping),State Bureau of Surveying and Mapping
文摘Strip mining is one of the efficient measures to control surface subsidence and mining damage. However, the researches on the laws of the geological mining factors to upper and lower pillar's stability are still deficient in multi-coal seam strip mining at present. Based on the three dimension fast Lagrangian analysis of continua (short for FLAC3D) numerical simulation software, the laws of the stress increasing coefficient on the coal pillar and its stability were systematically studied for different depths, different mining widths, different interlayer spacings, different mining thicknesses, different properties of interstratified rock and the spacial relations of the upper and lower pillars in vertical alignment in multi-coal seam strip mining. The function relation between the stress increasing coefficient of upper and lower pillars with the mining depth, mining widths, interlayer spacing, mining thickness, property of interstratified rock and the spatial relationship were obtained.
基金funded by State Key Laboratory of Strata Intelligent Control and Green Mining Cofounded by Shandong Province and the Ministry of Science and Technology,Shandong University of Science and Technology(Grant No.MDPC2023ZR01)Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(Grant No.WPUKFJJ2019-19)Major research project of Guizhou Provincial Department of Education on innovative groups(Grant No.Qianjiaohe KY[2019]070)。
文摘A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geographical distribution,dynamic development process,and failure mechanism of these ground fissures by employing field monitoring,numerical simulation,and theoretical analysis.The findings demonstrate that ground fissure development has an obvious feature of subregion,and its geographical distribution is significantly affected by topography.Tensile type,open type,and stepped type are three different categories of ground fissure.Ground fissures emerge dynamically as the panel advances,and they typically develop with a distance of less than periodic weighting step distance in advance of panel advancing position.Ground fissures present the dynamic development feature,temporary fissure has the ability of self-healing.The dynamic development process of ground fissure with closed-distance coal seam repeated mining is expounded,and the development scale is a dynamic development stage of“closure→expansion→stabilized”on the basis of the original development scale.From the perspective of topsoil deformation,the computation model considering two points movement vectors towards two directions of the gob and the ground surface is established,the development criterion considering the critical deformation value of topsoil is obtained.The mechanical model of hinged structure of inclined body is proposed to clarify the ground fissure development,and the interaction between slope activity and ground fissure development is expounded.These research results fulfill the gap of ground fissures about development regularity and formation mechanism,and can contribute to ground fissure prevention and treatment with Karst landform.
基金Financial support for this work, provided by the National Science and Technology Major Project (No. 2011ZX05034-001)
文摘To predict joint development characteristics of coal seams, joint characteristics of rock seams from 88field stations were observed and comparisons were made between joint characteristics of coal and rock seams at 10 coal outcrops. Additionally, detailed joint measurements of underground coal seams were taken at two coal mines. This study investigated the effects of seam thickness, lithology, and structure on joint development and established the relationship between joint development of coal and rock seams, which allowed predictions of predominant joint densities for the No.5 coal seam in the southeastern margin of the Ordos basin. The results show that outcrop and underground coal seams exhibit the same joint systems as rock seams. The joints are mainly upright. Predominant joints strike 55° on average, followed by joints striking 320°. The joint density of the coal seam is 18.7–22.5 times that of the sandstone seam at the same thickness. The predominant joint density of the No.5 coal seam, controlled by the structure, is 4–20 joints per meter. Joint densities exhibit high values at intersecting areas of faults and folds and decrease values in structurally stable areas. The permeability increases exponentially with increasing density of the predominant joints.
基金Funded by the Scientific Program of Hunan Provincial Science and Technology Department(2014FJ3104)Scientific Program of Hunan Provincial Education Department(13C313)
文摘It is an important part of green mining to control the disasters of coal mining which have caused irreversible damages to buildings and ecological environment. Strip mining is one of the efficient measures to control surface subsidence and mining damage. However, the research on the laws of the surface subsidence are still deficient in multi-coal seam strip mining at present. Based on the Fast Lagrangian Analysis of Continua(short for FLAC3D) numerical simulation software, the laws of the surface subsidence and horizontal movement were systematically studied for different depths, different mining widths, different distances between seams, different mining thickness, different parameters between seams and the special relations of the upper pillar and the lower pillar in the vertical direction in multi-seam strip mining. The function relation between the maximum subsidence and the maximum horizontal movement with the depth, the mining width, the seam distance, mining thickness, different parameters between seams and the partial offset are summarized respectively. Finally the formula integrating the surface maximum subsidence value and the maximum horizontal movement was deduced. The results can be used for reference theory and measure in forecasting the surface displacement in multi-coal seam strip mining.