期刊文献+
共找到133,512篇文章
< 1 2 250 >
每页显示 20 50 100
Phase selection rules for complex multi-component alloys with equiatomic or close-to-equiatomic compositions 被引量:1
1
作者 GUO Sheng LIU Chain T 《自然杂志》 北大核心 2013年第2期85-96,共12页
Alloying greatly expands the amount of available materials beyond the naturally existing ones, and more importantly offers the material scientists opportunities to initiatively control the composition-structure-proper... Alloying greatly expands the amount of available materials beyond the naturally existing ones, and more importantly offers the material scientists opportunities to initiatively control the composition-structure-property relationship in materials. Since commonly used metallic materials are mostly multi-component alloys, the know-how of alloying through compositional control, certainly plays a critical role in designing materials with desired structure and properties. However, alloying in multi-component alloys is an extremely complicated issue, as the alloyed products could be the amorphous phase, various solid solutions and intermetallic compounds containing two or more alloy components. By narrowing down the scope of the multi-component alloys to those with equiatomic or close-to-equiatomic compositions only, and also aiming at framing out the rules that govern the phase selection upon alloying in multi-component alloys in a broad sense, we have identified here a simple and easily executable two-parameter scheme that can effectively predict the formation of the amorphous phase, solid solutions and intermetallic compounds, in multi-component alloys, simply from the given alloy compositions. We believe this scheme reveals a clear physical scenario governing the phase selection in multi-component alloys, helps to simplify the alloy design, and benefits the future development of advanced metallic alloys like bulk metallic glasses and high entropy alloys. 展开更多
关键词 材料 合金化 结构特性 金属化合物
下载PDF
Atomic-scale simulations in multi-component alloys and compounds:A review on advances in interatomic potential 被引量:1
2
作者 Feiyang Wang Hong-Hui Wu +8 位作者 Linshuo Dong Guangfei Pan Xiaoye Zhou Shuize Wang Ruiqiang Guo Guilin Wu Junheng Gao Fu-Zhi Dai Xinping Mao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第34期49-65,共17页
Multi-component alloys have demonstrated excellent performance in various applications,but the vast range of possible compositions and microstructures makes it challenging to identify optimized alloys for specific pur... Multi-component alloys have demonstrated excellent performance in various applications,but the vast range of possible compositions and microstructures makes it challenging to identify optimized alloys for specific purposes.To overcome this challenge,large-scale atomic simulation techniques have been widely used for the design and optimization of multi-component alloys.The capability and reliability of large-scale atomic simulations essentially rely on the quality of interatomic potentials that describe the interactions between atoms.This work provides a comprehensive summary of the latest advances in atomic simulation techniques for multi-component alloys.The focus is on interatomic potentials,including both conventional empirical potentials and newly developed machine learning potentials(MLPs).The fitting processes for different types of interatomic potentials applied to multi-component alloys are also discussed.Finally,the challenges and future perspectives in developing MLPs are thoroughly addressed.Overall,this review provides a valuable resource for researchers interested in developing optimized multicomponent alloys using atomic simulation techniques. 展开更多
关键词 multi-component alloys Atomic simulation Empirical potentials Machine learning potentials
原文传递
Research on shell-side heat and mass transfer with multi-component in LNG spiral-wound heat exchanger under sloshing conditions
3
作者 Xue-Ping Du Guang-Lei Yu +3 位作者 Ya-Cheng Xu Zhi-Jie Chen Nai-Liang Li Huan-Guang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1333-1345,共13页
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud... The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions. 展开更多
关键词 Spiral-wound heat exchanger Sloshing conditions Two-phase flow multi-component Heat and mass transfer
下载PDF
Effect of Melt Superheating Treatment on Directional Solidification Interface Morphology of Multi-component Alloy 被引量:9
4
作者 Changshuai Wang Jun Zhang Lin Liu Hengzhi Fu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第7期668-672,共5页
The influence of melt superheating treatment on the solid/liquid (S/L) interface morphology of directionally solidified Ni-based superalloy DZ125 is investigated to elucidate the relationship between melt characteri... The influence of melt superheating treatment on the solid/liquid (S/L) interface morphology of directionally solidified Ni-based superalloy DZ125 is investigated to elucidate the relationship between melt characteristic and S/L interface stability. The results indicate that the interface morphology is not only related to the withdrawal velocity (R) but also to the melt superheating temperature (Ts) when the thermal gradient of solidification interface remains constant for different Ts with appropriate superheating treatment regulation. The interface morphology changes from cell to plane at R of 1.1 μm/s when Ts increases from 1500°C to 1650°C, and maintains plane with further elevated Ts of 1750°C. However, the interface morphology changes from coarse dendrite to cell and then to cellular dendrite at R of 2.25 μm/s when Ts increases from 1500°C to 1650°C and then to 1750°C. It is proved that the solidification onset temperature and the solidification interval undergo the nonlinear variation when Ts increases from 1500°C to 1680°C, and the turning point is 1650°C at which the solidification onset temperature and the solidification interval are all minimum. This indicates that the melt superheating treatment enhances the solidification interface stability and has important effect on the solidification characteristics. 展开更多
关键词 Melt superheating treatment Directional solidification interface morphology Solidification characteristics multi-component alloy
原文传递
A Solute Pinning Approach to Solute Drag in Multi-Component Solid Solution Alloys 被引量:1
5
作者 Emmanuel Hersent Knut Marthinsen Erik Nes 《Modeling and Numerical Simulation of Material Science》 2014年第1期8-13,共6页
The Cahn, Lücke and Stüwe theory remains the backbone of more complex analysis dealing with solute drag, however, the mathematical treatment is rather involved. A new approach based on solute pinning the bou... The Cahn, Lücke and Stüwe theory remains the backbone of more complex analysis dealing with solute drag, however, the mathematical treatment is rather involved. A new approach based on solute pinning the boundary has therefore recently been suggested, which has the main advantage of a simpler mathematical treatment. In the present paper this approach has been generalized to take into account the influence of different types of solute atoms in the high solute content/low driving force regime. 展开更多
关键词 Boundary Mobility Solute Drag multi-component alloys Analytical Modelling
下载PDF
Effects of V addition on the mechanical properties at elevated temperatures in a γ”-strengthened NiCoCr-based multi-component alloy
6
作者 Yunwei Pan Anping Dong +4 位作者 Yang Zhou Dafan Du Donghong Wang Guoliang Zhu Baode Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第12期290-300,共11页
Ni Co Cr-based multi-component alloys have drawn much attention due to their exceptional ductility and strain hardening capacity.However,insufficient strength-ductility synergy of NiCoCr alloy has always been an issue... Ni Co Cr-based multi-component alloys have drawn much attention due to their exceptional ductility and strain hardening capacity.However,insufficient strength-ductility synergy of NiCoCr alloy has always been an issue that prevents it from extensive applications.According to our previous research,the precipitation ofγ”phase can significantly improve the strength-ductility synergy of this alloy system at room temperature.In this study,the effects of V addition onγ”phase stability and high-temperature mechanical properties have been explicitly investigated.The results indicate that V addition can stabilize the metastableγ”phase in this alloy system and prevent it from transforming into a stableδphase at grain boundaries upon 650℃aging,resulting in improved mechanical properties at elevated temperatures.The specific strength ofγ”-strengthened multi-component NiCoCr-based alloy can reach up to 86.2 MPa gcmat 650℃,which is higher than those of Ni-based superalloys,IN 939 and Waspaloy.This work provides theoretical guidance for the novel design of γ”-strengthened alloy for high-temperature applications. 展开更多
关键词 multi-component alloys CALPHAD γ”phase Microstructural evolution High-temperature mechanical properties
原文传递
Effects of hydrogen charging and deformation on tensile properties of a multi-component alloy for nuclear applications
7
作者 Te Zhu Zhi-Hong Zhong +10 位作者 Koichi Sato Ya-Min Song Feng-Jiao Ye Qian-Qian Wang Ye Dong Peng Zhang Run-Sheng Yu Bao-Yi Wang Alfonso H.W.Ngan Xing-Zhong Cao Qiu Xu 《Tungsten》 EI 2022年第3期212-218,共7页
In this study,the influence of hydrogen charging and deformation on the tensile behavior of a 60Fe-12Cr-10Mn-15Cu-3Mo multi-component alloy was investigated using electron microscopy and positron annihilation lifetime... In this study,the influence of hydrogen charging and deformation on the tensile behavior of a 60Fe-12Cr-10Mn-15Cu-3Mo multi-component alloy was investigated using electron microscopy and positron annihilation lifetime spectroscopy.The results show that hydrogen-induced vacancy clusters found in the electrochemically charged hydrogen specimens are responsible for crack initiation.Upon ingress to the microstructure,hydrogen promotes the formation of cell-structured dislocations that are beneficial for the improvement of tensile strength.In addition,hydrogen embrittlement can be mitigated by dislocations that can hinder hydrogen mobility in the deformed specimens. 展开更多
关键词 Hydrogen embrittlement Dislocation cell multi-component alloys
原文传递
Phase field modeling for dendritic morphology transition and micro-segregation in multi-component alloys 被引量:3
8
作者 WANG JinCheng ZHANG YuXiang +2 位作者 YANG YuJuan LI JunJie YANG GenCang 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第2期344-351,共8页
By using the phase field model for the solidification of multi-component alloys and coupling with real thermodynamic data, the dendritic morphology transition and the dendritic micro-segregation of Ni-Al-Nb ternary al... By using the phase field model for the solidification of multi-component alloys and coupling with real thermodynamic data, the dendritic morphology transition and the dendritic micro-segregation of Ni-Al-Nb ternary alloys are simulated in two cases, i.e., varying the alloy composition at a fixed under-cooling and varying the undercooling at a fixed alloy composition. The simulated results indicate that with the increase of the dimensionless undercooling U (U=ΔT/ΔT0, where ΔT is the undercooling and ΔT0 the temperature interval between the solidus and liquidus), the dendritic morphology transfers from dendritic to globular growth in both cases. As to the dendritic micro-segregation, both cases present a regularity of increasing at first and then decreasing. 展开更多
关键词 multi-component alloyS PHASE field method MORPHOLOGY TRANSITION MICRO-SEGREGATION
原文传递
LOW TEMPERATURE THERMAL DEBINDING BEHAVIOR OF WAX-BASED MULTI-COMPONENT BINDER FOR TUNGSTEN HEAVY ALLOY 被引量:10
9
作者 Fan, Jinglian Huang, Baiyun +1 位作者 Qu, Xuanhui Li, Yiming 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第1期95-100,共6页
1INTRODUCTIONPowderinjectionmoulding(PIM)isanewprocessformanufacturingnearnetshapepartswithadvantagesoflowco... 1INTRODUCTIONPowderinjectionmoulding(PIM)isanewprocessformanufacturingnearnetshapepartswithadvantagesoflowcost,highperformanc... 展开更多
关键词 THERMAL DEBINDING multi component BINDER TUNGSTEN HEAVY alloy
下载PDF
Relationship between the unique microstructures and behaviors of high-entropy alloys 被引量:2
10
作者 Yaqi Wu Peter KLiaw +5 位作者 Ruixuan Li Weiran Zhang Guihong Geng Xuehui Yan Guiqun Liu Yong Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1350-1363,共14页
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness... High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance. 展开更多
关键词 high-entropy alloys unique microstructure special properties alloy design
下载PDF
2D Q-compensated multi-component elastic Gaussian beam migration
11
作者 Chao Chen Ji-Dong Yang +2 位作者 Xin-Ru Mu Zhen-Chun Li Jian-Ping Huang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期230-240,共11页
Elastic waves are affected by viscoelasticity during the propagation through the Earth,resulting in energy attenuation and phase distortion,in turn resulting in low seismic imaging accuracy.Therefore,viscoelasticity s... Elastic waves are affected by viscoelasticity during the propagation through the Earth,resulting in energy attenuation and phase distortion,in turn resulting in low seismic imaging accuracy.Therefore,viscoelasticity should be considered in seismic migration imaging.We propose a Q compensated multicomponent elastic Gaussian beam migration(Q-EGBM)method to(1)separate the elastic-wave data into longitudinal(P)and transverse(S)waves to perform PP-wave and PS-wave imaging;(2)recover the amplitude loss caused by attenuation;(3)correct phase distortions caused by dispersion;(4)improve the resolution of migration imaging.In this paper,to accomplish(2),(3),and(4),we derive complex-valued traveltimes in viscoelastic media.The results of numerical experiments using a simple five-layer model and a sophisticated BP gas model show that the method presented here has significant advantages in recovering energy decay and correcting phase distortion,as well as significantly improving imaging resolution. 展开更多
关键词 Q-compensated VISCOELASTIC Gaussian beam migration multi-component Absorption attenuation
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys 被引量:1
12
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment MICROSTRUCTURE Damping properties.
下载PDF
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts 被引量:2
13
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating CORROSION ADHESION
下载PDF
Influence of heat treatment on microstructure,mechanical and corrosion behavior of WE43 alloy fabricated by laser-beam powder bed fusion 被引量:5
14
作者 Chenrong Ling Qiang Li +6 位作者 Zhe Zhang Youwen Yang Wenhao Zhou Wenlong Chen Zhi Dong Chunrong Pan Cijun Shuai 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期258-275,共18页
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe... Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility. 展开更多
关键词 laser-beam powder bed fusion WE43 alloys heat treatment mechanical performance biodegradation behavior
下载PDF
An ionic liquid-assisted strategy for enhanced anticorrosion of low-energy PEO coatings on magnesium–lithium alloy 被引量:2
15
作者 You Zhang Chuping Chen +3 位作者 Haoyue Tian Shuqi Wang Chen Wen Fei Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2380-2396,共17页
A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab... A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance. 展开更多
关键词 Magnesium-lithium alloy Plasma electrolytic oxidation Low energy Ionic liquid Corrosion resistance
下载PDF
CONSTITUTION OF Al-BASE MULTI-COMPONENT QUASI-CRYSTALLINE ALLOYS 被引量:1
16
作者 Chen Zhenhua Jiang Xiangyang +2 位作者 Zhou Duosan Wang Yun Huang Peiyun (Research Inititute of Non-Equilibrium Materials Science and Engineering ,central South University of Technology, Changsha 410083) 《中国有色金属学会会刊:英文版》 CSCD 1996年第2期61-66,共6页
CONSTITUTIONOFAl-BASEMULTI-COMPONENTQUASI-CRYSTALLINEALLOYSChenZhenhua;JiangXiangyang;ZhouDuosan;WangYun;Hua... CONSTITUTIONOFAl-BASEMULTI-COMPONENTQUASI-CRYSTALLINEALLOYSChenZhenhua;JiangXiangyang;ZhouDuosan;WangYun;HuangPeiyun(Research... 展开更多
关键词 QUASI-CRYSTAL Al-base alloy composition addition
下载PDF
Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature 被引量:2
17
作者 Mengwei Wu Wei Yong +2 位作者 Cunqin Fu Chunmei Ma Ruiping Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期773-785,共13页
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac... The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys. 展开更多
关键词 machine learning support vector regression shape memory alloys martensitic transformation temperature
下载PDF
Microstructures,corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni)alloys for plugging tool applications 被引量:1
18
作者 Baosheng Liu Jiali Wei +4 位作者 Shaohua Zhang Yuezhong Zhang Pengpeng Wu Daqing Fang Guorui Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期697-711,共15页
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t... Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications. 展开更多
关键词 magnesium alloys microstructure micro-galvanic corrosion mechanical properties
下载PDF
Influence of layer thickness on formation quality,microstructure,mechanical properties,and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion 被引量:2
19
作者 Bangzhao Yin Jinge Liu +7 位作者 Bo Peng Mengran Zhou Bingchuan Liu Xiaolin Ma Caimei Wang Peng Wen Yun Tian Yufeng Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1367-1385,共19页
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not... Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases. 展开更多
关键词 Magnesium alloy WE43 Laser powder bed fusion Layer thickness Process optimization
下载PDF
Analysis on the formation principle and present situation of nano phase state of multi-component self-assembly of traditional Chinese compound medicine decoction
20
作者 GUAN Qing‑xia ZHOU Xiao‑ying +4 位作者 LÜShao‑wa YANG Fang‑fang NIE Ze‑hui LIN Ze‑yu WANG Yan‑hong 《Journal of Hainan Medical University》 CAS 2023年第11期68-76,共9页
Traditional Chinese medicine decoction is a complex polydispersed phase system containing real solution,colloid solution,emulsion and suspension.The compound decoction of traditional Chinese medicine has complex compo... Traditional Chinese medicine decoction is a complex polydispersed phase system containing real solution,colloid solution,emulsion and suspension.The compound decoction of traditional Chinese medicine has complex components,including saponins,alkaloids,polysaccharides,flavonoids,amino acids and so on,which can be self-assembled to form gels,fibers,micelles,vesicles and so on.The self-assembled nano-phase not only neutralizes the single drug and reduces the toxicity and side effects,but also has its own pharmacological effects,which complement each other to achieve synergistic effect,so as to achieve the role of drug supplement,which is of research significance.The formation principle,solubilization and synergism principle and characterization method of multi-component self-assembly of traditional Chinese medicine compound decoction are discussed in this paper. 展开更多
关键词 Compound decoction of traditional Chinese medicine multi-component SELF-ASSEMBLY Formation principle Solubilization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部