In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy ...In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.展开更多
Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion fl...Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions.展开更多
An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effe...An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.展开更多
The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, ...The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear.展开更多
A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based co...A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based combustible mixture gas. In the code,Young's technique was employed to track the interface between the explosion products and air,and combustible function model was adopted to simulate ignition process. The code was employed to study explosion flow field inside and outside the duct and to obtain peak pressures in different boundary conditions and ignition positions. Numerical results suggest that during the propagation in a duct,for point initiation,the curvature of spherical wave front gradually decreases and evolves into plane wave. Due to the multiple reflections on the duct wall,multi-peak values appear on pressure-time curve,and peak pressure strongly relies on the duct boundary conditions and ignition position. When explosive wave reaches the exit of the duct,explosion products expand outward and forms shock wave in air. Multiple rarefaction waves also occur and propagate upstream along the duct to decrease the pressure in the duct. The results are in agreement with one-dimensional isentropic gas flow theory of the explosion products,and indicate that the ignition model and multi-material interface treatment method are feasible.展开更多
The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata ...The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata in tight sandstone. First, multi-component composite seismic attributes are obtained.The strong nonlinear relationships between multi-component composite attributes and gas-bearing reservoirs can be constrained through a DNN. Therefore, we identify and predict the gas-bearing strata using a DNN. Then, sample data are fed into the DNN for training and testing. After optimized network parameters are determined by the performance curves and empirical formulas, the best deep learning gas-bearing prediction model is determined. The composite seismic attributes can then be fed into the model to extrapolate the hydrocarbon-bearing characteristics from known drilling areas to the entire region for predicting the gas reservoir distribution. Finally, we assess the proposed method in terms of the structure and fracture characteristics and predict favorable exploration areas for identifying gas reservoirs.展开更多
Multi-component seismic exploration is an important technique in the utilization of P-waves and converted S-waves for oil and gas exploration.It has unique advantages in the structural imaging of gas zones,reservoir p...Multi-component seismic exploration is an important technique in the utilization of P-waves and converted S-waves for oil and gas exploration.It has unique advantages in the structural imaging of gas zones,reservoir prediction,lithology,and gas-water identifi cation,and the development direction and degree of fractures.Multi-component joint inversion is one of the most important steps in multi-component exploration.In this paper,starting from the basic principle of multi-component joint inversion,the diff erences between the method and single P-wave inversion are introduced.Next,the technique is applied to the PLN area of the Sichuan Basin,and the P-wave impedance,S-wave impedance,and density are obtained based on multi-component joint inversion.Through the velocity and lithology,porosity,and gas saturation fi tting formulas,prediction results are calculated,and the results are analyzed.Finally,multi-component joint inversion and single P-wave inversion are compared in eff ective reservoir prediction.The results show that multi-component joint inversion increases the constraints on the inversion conditions,reduces the multi-solution of a single P-wave inversion,and is more objective and reliable for the identification of reservoirs,effectively improving the accuracy of oil and gas reservoir prediction and development.展开更多
One kind of combustible gas alarms based on industrial Ethernet was designed to prevent the gas leakage in industrial production sites, The alarm adopted the high performance microprocessor LPC2214 as the main chip. T...One kind of combustible gas alarms based on industrial Ethernet was designed to prevent the gas leakage in industrial production sites, The alarm adopted the high performance microprocessor LPC2214 as the main chip. The embedded operating system μC/OS-Ⅱand TCP/IP protocol stack uIP running on LPC2214 constitute a development platform of application of the combustible gas alarm, The test shows that it can automatically and continuously detect combustible gas in industrial production sites in several positions;it can give out sound-light alarm and take protective measures immediately against the gas leakage; and it can send the detected data to PC through the Ethernet interface to realize the remote detection. The designed project provides a reference to design industrial devices based on industrial Ethernet展开更多
ZnO nanosheets doped with yttrium(Y) were synthesized via a solution combustion method using zinc nitrate and tartaric acid as raw materials.The scanning electron microscopy and X-ray powder diffraction were used to...ZnO nanosheets doped with yttrium(Y) were synthesized via a solution combustion method using zinc nitrate and tartaric acid as raw materials.The scanning electron microscopy and X-ray powder diffraction were used to characterize ZnO nanosheets and the gas sensing properties of them were investigated.The results show that the as-synthesized ZnO nanosheets with diameters of20-100 nm have a wurtzite structure with rough surface.The sensor made from the 2%Y-doped ZnO nanosheets exhibits a stronger response toward 100x10-6(volume fraction) ethanol,its sensitivity at 300℃ is 17.50,and its optimal operating temperature(300℃)is lower than that of the pure ZnO(330℃).The obvious sensitivity(about 2.5) can be observed at the volume fraction of ethanol as low as 5×10-(-6),while its the response time is only 2s at 300℃.Moreover,the Y-doped ZnO sensor has a better selectivity to ethanol than other gases.展开更多
This paper simulates the combustion system of a regular tankless gas water heater under different static pressure conditions.The simulation results are in accordance with the test results.It proves that the used physi...This paper simulates the combustion system of a regular tankless gas water heater under different static pressure conditions.The simulation results are in accordance with the test results.It proves that the used physical and mathematical models are reasonable.The results show that the flame height and the excess air ratios depend on the system pressure drop but not on the absolute pressure at the combustion chamber.The pressure drop and the amount of combustion air have an inverse relationship with CO generation,and they also impact on the temperature and velocity fields.To reduce CO emission,a stronger fan is needed to provide extra pressure head to ensure that enough combustion air is introduced into the system.This study provides a useful research tool to develop products through computational fluid dynamic analysis and laboratory testing.展开更多
The adjustment of the gas drainage rate has an immediate impact on air leakage in gob,thus resulting in the change of self-heating of coal.While regulating the gas drainage parameters,the risk of spontaneous combustio...The adjustment of the gas drainage rate has an immediate impact on air leakage in gob,thus resulting in the change of self-heating of coal.While regulating the gas drainage parameters,the risk of spontaneous combustion of coal should be considered.The risk assessment of gas control and spontaneous combustion of coal under gas drainage in a tunnel was investigated at different gas drainage rates.The distributions of the air volume along the working face,the gas management effects and the width of the oxidation zone were subjected to risk analysis.As the simulation results showed,with increasing gas drainage rate,although the safety of gas dilution by ventilation was assured,the intensifying air leakage caused the oxidation zone to move into the deeper gob and led to an increase in the width of the oxidation zone.A risk assessment method was proposed to determine a suitable gas drainage rate for the upper tunnel.The correctness of the risk assessment and the validity of the numerical modelling were confirmed by the field measurements.展开更多
The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conduc...The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conducts in sinter zone when flue gas passes through the sintering bed,which releases much heat and reduces the consumption of solid fuel.The ratio of coke breeze can be reduced from 5% to 4.7% with 2% CO in circulating flue gas.In addition,with the increase of CO content in circulating flue gas,the combustion efficiency of fuel is improved,and the flame front is increased slightly while still matches with the heat transfer front.These are beneficial to increasing the maximum temperature and prolonging the high temperature duration,especially in the upper layer of sintering bed.As a consequence,the productivity,vertical sintering velocity and quality of sinter are improved.展开更多
The removal of NO from oxy-fuel combustion is typically incorporated in sour gas compression purification process. This process involves the oxidation of NO to NO2 at a high pressure of 1–3 MPa, followed by absorptio...The removal of NO from oxy-fuel combustion is typically incorporated in sour gas compression purification process. This process involves the oxidation of NO to NO2 at a high pressure of 1–3 MPa, followed by absorption of NO2 by water. In this pressure range, the NO conversion rates calculated using the existing kinetic constants are often higher than those obtained experimentally. This study aimed to achieve the regression of kinetic parameters of NO oxidation based on the existing experimental results and theoretical models.Based on three existing NO oxidation mechanisms, first, the expressions for NO conversion against residence time were derived. By minimizing the mean-square errors of NO conversion ratio, the optimum kinetic rate constants were obtained. Without considering the reverse reaction for NO oxidation, similar mean-square errors for NO conversion ratio were calculated. Considering the reverse reaction for NO oxidation based on the termolecular reaction mechanism, the minimum mean-square error for NO conversion ratio was obtained. Thus, the optimum NO oxidation rate in the pressure range 0.1–3 MPa can be expressed as follows:-d[NO]/dt=d[NO2]/dt=0.0026[NO]2[O2]-0.0034[NO2]2 Detailed elementary reactions for N2/NO/NO2/O2 system were established to simulate the NO oxidation rate. A sensitivity analysis showed that the critical elementary reaction is 2 NO + O2? 2 NO2. However, the simulated NO conversions at a high pressure of 10–30 bar are still higher than the experimental values and similar to those obtained from the models without considering the reverse reaction for NO oxidation.展开更多
Effects of butanol isomers on characteristics of combustion and emission were studied on PFI SI engine. Experiments were operated under the condition of 3 and 5 bar brake mean effective pressure (BMEP) engine loads an...Effects of butanol isomers on characteristics of combustion and emission were studied on PFI SI engine. Experiments were operated under the condition of 3 and 5 bar brake mean effective pressure (BMEP) engine loads and different equivalence ratios (φ=0.83-1.25) with engine speed of 1200 r/min using blends made of 70 vol.% gasoline and 30 vol.% butanol isomers (N30, S30, I30 and T30). The results indicated that compared with gasoline, all butanol isomer blends have higher cylinder pressure. N30 has the highest and most advanced peak pressure, and T30 shows a higher brake specific fuel consumption (BSFC) and lower brake thermal efficiency (BTE). N30 presents a lower UHC emissions and I30 has slightly higher CO emissions than other blends. For unregulated emissions, compared with gasoline, butanol isomer blends have higher acetaldehyde, and N30 produces a higher emission of 1,3-butadiene than other blends. A reduction in benzene, toluene, ethylbenzene and xylene (BTEX) has been found with butanol isomer blends.展开更多
One-dimensional simulations with a detailed hydrogen-oxygen reaction mechanism have been performed to investigate detonation phenomenon in a combustion light gas gun(CLGG).Convection fluxes of the Navier-Stokes equati...One-dimensional simulations with a detailed hydrogen-oxygen reaction mechanism have been performed to investigate detonation phenomenon in a combustion light gas gun(CLGG).Convection fluxes of the Navier-Stokes equations are solved using the WAF(weighted average flux)scheme HLLC Riemann solver.A high resolution fifth-order WENO scheme for the variable extrapolation at the volume interface and a fourth-order Runge-Kutta scheme for the time advancement are used.Validation tests of the stoichiometric hydrogen-oxygen deflagration to detonation transition process shows good agreement between the computed results and the analytical and documented solutions,demonstrating the reliability on the detonation simulation of the current scheme.Simulation results of the interior ballistic process of the CLGG show that the flame propagation experiences three distinct stages.The blast detonation wave causes a high-pressure shock and hazardous oscillations in the chamber and makes the projectile accelerate with fluctuations,but has only a small improvement to the muzzle velocity.展开更多
In this paper the premixed catalytic combustion emissions such as CO, unburned hydrocarbon (UHC), NOx and the temperature distribution in the catalytic monolith with ultra low concentration of Pd were studied. Three t...In this paper the premixed catalytic combustion emissions such as CO, unburned hydrocarbon (UHC), NOx and the temperature distribution in the catalytic monolith with ultra low concentration of Pd were studied. Three types of monoliths were used for experiments and the temperature of preheated air was respectively 50℃ , 100℃ and 200℃ . The results showed that preheated air made radial temperature in the catalytic monolith uniform which helped to avoid local hot spots so as to decrease NOx emission. The experiment also proved that the shorter monolith showed much better catalytic combustion performance than longer one and the temperature at the exit of the shorter monolith was relatively lower. On the contrary, the temperature was higher in the longer monolith and the lethal NOx emission was slightly increased.展开更多
A detailed chemical mechanism to describe the combustion of natural gas in internal combustion (IC) engine has been developed,which is consisting of 233 reversible reactions and 79 species.This mechanism accounts fo...A detailed chemical mechanism to describe the combustion of natural gas in internal combustion (IC) engine has been developed,which is consisting of 233 reversible reactions and 79 species.This mechanism accounts for the oxidation of methane,ethane,propane and nitrogen.It has been tested using IC engine model of CHEMKIN 4.1.1 and experimental measurements.The performance of the proposed mechanism was evaluated at various equivalence ratios (φ=0.6 to φ=1.3),initial reactor conditions (Tini=500 to 3500 ℃; Pini=1.0 to 10 atm) and engine speed (2000-7000 rpm).The proposed kinetic mechanism shows good concordances with GRI3.0 mechanism especially in the prediction of temperature,pressure and major product species (H2O,CO2) profiles at stoichiometric conditions (φ=1.0).The experimental results of measured cylinder pressure,species fractions were also in agreement with simulation results derived from the proposed kinetic mechanism.The proposed mechanism successfully predicts the formation of gaseous pollutants (CO,NO,NO2,NH3) in the engine exhaust.Although there are some discrepancies among each simulation profile,the proposed detailed mechanism is good to represent the combustion of natural gas in IC engine.展开更多
The scaling of the flowfield in a gas gas combustion chamber is investigated theoretically, numerically and experimentally. To obtain the scaling criterion of the gas-gas combustion flowfield, formulation analysis of ...The scaling of the flowfield in a gas gas combustion chamber is investigated theoretically, numerically and experimentally. To obtain the scaling criterion of the gas-gas combustion flowfield, formulation analysis of the threedimensional (3D) Navier-Stokes equations for a gaseous multi-component mixing reaction flow is conducted and dimensional analysis on the gas gas combustion phenomena is also carried out. The criterion implies that the size and the pressure of the gas gas combustion chamber can be changed. Based on the criterion, multi-element injector chambers with different geometric sizes and at different chamber pressures ranging from 3 MPa to 20 MPa are numerically simulated. A multi-element injector chamber is designed and hot-fire tested at five chamber pressures from 1.64 MPa to 3.68 MPa. Wall temperature measurements are used to understand the similarity of combustion flowfields in the tests. The results have verified the similarities between combustion flowfields under different chamber pressures and geometries, with the criterion applied.展开更多
This manuscript developed an adjustability test system of gas appliances,and proposed determination methods of adjustability domain and technical approach of performance testing of gas appliance,in order to develop ex...This manuscript developed an adjustability test system of gas appliances,and proposed determination methods of adjustability domain and technical approach of performance testing of gas appliance,in order to develop experimental determination,quantify the product performance,design quality and combustion characteristics of gas appliances,and provide test foundation and platform for product design,performance test,quality assessment and technology upgrading for gas appliance industry aiming to multi-gas resources in China.The flexible range of gas appliances to different gases and the interchangeability domain of city gases were determined experimentally,together with the equation of combustion characteristics limit curves of gas appliances.The results showed that the second gas appliance has the biggest capability for the change of gas quality,which permits an 11.2% fluctuation in the Wobbe Index of gas;while the third gas appliance has the least capability for the change of gas quality,which only permits a 1.9% fluctuation in the Wobbe Index of gas.The paper also provides the common adjustability domain of the three gas appliances.展开更多
基金support from the National Key R&D Program of China(Grant No.2022YFC3004704)the National Natural Science Foundation of China(Grant No.52374241)the National Natural Science Foundation of China Youth Foundation(Grant No.52104230).
文摘In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.
基金supported by the National Natural Science Foundation of China(21978092).
文摘Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions.
基金supported by the National Natural Science Foundation of China(No.52174038 and No.52004307)China Petroleum Science and Technology Project-major project-Research on tight oil-shale oil reservoir engineering methods and key technologies in Ordos Basin(ZLZX2020-02-04)Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC015).
文摘An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.
基金supported by National Natural Science Foundation of China (Grant No. 50521503)National Basic Research Program of China (973 Program, Grant No. 2007CB714704)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z406)
文摘The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear.
基金Project(10572026) supported by the National Natural Science Foundation of China
文摘A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based combustible mixture gas. In the code,Young's technique was employed to track the interface between the explosion products and air,and combustible function model was adopted to simulate ignition process. The code was employed to study explosion flow field inside and outside the duct and to obtain peak pressures in different boundary conditions and ignition positions. Numerical results suggest that during the propagation in a duct,for point initiation,the curvature of spherical wave front gradually decreases and evolves into plane wave. Due to the multiple reflections on the duct wall,multi-peak values appear on pressure-time curve,and peak pressure strongly relies on the duct boundary conditions and ignition position. When explosive wave reaches the exit of the duct,explosion products expand outward and forms shock wave in air. Multiple rarefaction waves also occur and propagate upstream along the duct to decrease the pressure in the duct. The results are in agreement with one-dimensional isentropic gas flow theory of the explosion products,and indicate that the ignition model and multi-material interface treatment method are feasible.
基金funded by the Natural Science Foundation of Shandong Province (ZR202103050722)National Natural Science Foundation of China (41174098)。
文摘The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata in tight sandstone. First, multi-component composite seismic attributes are obtained.The strong nonlinear relationships between multi-component composite attributes and gas-bearing reservoirs can be constrained through a DNN. Therefore, we identify and predict the gas-bearing strata using a DNN. Then, sample data are fed into the DNN for training and testing. After optimized network parameters are determined by the performance curves and empirical formulas, the best deep learning gas-bearing prediction model is determined. The composite seismic attributes can then be fed into the model to extrapolate the hydrocarbon-bearing characteristics from known drilling areas to the entire region for predicting the gas reservoir distribution. Finally, we assess the proposed method in terms of the structure and fracture characteristics and predict favorable exploration areas for identifying gas reservoirs.
基金This work was supported by“Thirteenth Five-Year”national science and technology major Project(No.2017ZX05018005-004)CNPC fundamental research project(No.2016E-0604)National Natural Science Foundation of China(No.41374111).
文摘Multi-component seismic exploration is an important technique in the utilization of P-waves and converted S-waves for oil and gas exploration.It has unique advantages in the structural imaging of gas zones,reservoir prediction,lithology,and gas-water identifi cation,and the development direction and degree of fractures.Multi-component joint inversion is one of the most important steps in multi-component exploration.In this paper,starting from the basic principle of multi-component joint inversion,the diff erences between the method and single P-wave inversion are introduced.Next,the technique is applied to the PLN area of the Sichuan Basin,and the P-wave impedance,S-wave impedance,and density are obtained based on multi-component joint inversion.Through the velocity and lithology,porosity,and gas saturation fi tting formulas,prediction results are calculated,and the results are analyzed.Finally,multi-component joint inversion and single P-wave inversion are compared in eff ective reservoir prediction.The results show that multi-component joint inversion increases the constraints on the inversion conditions,reduces the multi-solution of a single P-wave inversion,and is more objective and reliable for the identification of reservoirs,effectively improving the accuracy of oil and gas reservoir prediction and development.
基金the National High Technology Research and Development Program of China (863 Program)(Grant No.2006AA040601)
文摘One kind of combustible gas alarms based on industrial Ethernet was designed to prevent the gas leakage in industrial production sites, The alarm adopted the high performance microprocessor LPC2214 as the main chip. The embedded operating system μC/OS-Ⅱand TCP/IP protocol stack uIP running on LPC2214 constitute a development platform of application of the combustible gas alarm, The test shows that it can automatically and continuously detect combustible gas in industrial production sites in several positions;it can give out sound-light alarm and take protective measures immediately against the gas leakage; and it can send the detected data to PC through the Ethernet interface to realize the remote detection. The designed project provides a reference to design industrial devices based on industrial Ethernet
基金Project(61079010)supported by the National Natural Science Foundation of ChinaProject(3122013P001)supported by the Significant Pre-research Funds of Civil Aviation University of ChinaProject(MHRD20140209)supported by the Science and Technology Innovation Guide Funds of Civil Aviation Administration of China
文摘ZnO nanosheets doped with yttrium(Y) were synthesized via a solution combustion method using zinc nitrate and tartaric acid as raw materials.The scanning electron microscopy and X-ray powder diffraction were used to characterize ZnO nanosheets and the gas sensing properties of them were investigated.The results show that the as-synthesized ZnO nanosheets with diameters of20-100 nm have a wurtzite structure with rough surface.The sensor made from the 2%Y-doped ZnO nanosheets exhibits a stronger response toward 100x10-6(volume fraction) ethanol,its sensitivity at 300℃ is 17.50,and its optimal operating temperature(300℃)is lower than that of the pure ZnO(330℃).The obvious sensitivity(about 2.5) can be observed at the volume fraction of ethanol as low as 5×10-(-6),while its the response time is only 2s at 300℃.Moreover,the Y-doped ZnO sensor has a better selectivity to ethanol than other gases.
文摘This paper simulates the combustion system of a regular tankless gas water heater under different static pressure conditions.The simulation results are in accordance with the test results.It proves that the used physical and mathematical models are reasonable.The results show that the flame height and the excess air ratios depend on the system pressure drop but not on the absolute pressure at the combustion chamber.The pressure drop and the amount of combustion air have an inverse relationship with CO generation,and they also impact on the temperature and velocity fields.To reduce CO emission,a stronger fan is needed to provide extra pressure head to ensure that enough combustion air is introduced into the system.This study provides a useful research tool to develop products through computational fluid dynamic analysis and laboratory testing.
基金financially sponsored by the National Natural Science Foundation of China (Nos. 51774114 and 51404090)
文摘The adjustment of the gas drainage rate has an immediate impact on air leakage in gob,thus resulting in the change of self-heating of coal.While regulating the gas drainage parameters,the risk of spontaneous combustion of coal should be considered.The risk assessment of gas control and spontaneous combustion of coal under gas drainage in a tunnel was investigated at different gas drainage rates.The distributions of the air volume along the working face,the gas management effects and the width of the oxidation zone were subjected to risk analysis.As the simulation results showed,with increasing gas drainage rate,although the safety of gas dilution by ventilation was assured,the intensifying air leakage caused the oxidation zone to move into the deeper gob and led to an increase in the width of the oxidation zone.A risk assessment method was proposed to determine a suitable gas drainage rate for the upper tunnel.The correctness of the risk assessment and the validity of the numerical modelling were confirmed by the field measurements.
基金Projects(51174253,51304245)supported by the National Natural Science Foundation of ChinaProject(2013bjjxj015)supported by the Outstanding and Creative Doctor Scholarship of Central South University,ChinaProject supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conducts in sinter zone when flue gas passes through the sintering bed,which releases much heat and reduces the consumption of solid fuel.The ratio of coke breeze can be reduced from 5% to 4.7% with 2% CO in circulating flue gas.In addition,with the increase of CO content in circulating flue gas,the combustion efficiency of fuel is improved,and the flame front is increased slightly while still matches with the heat transfer front.These are beneficial to increasing the maximum temperature and prolonging the high temperature duration,especially in the upper layer of sintering bed.As a consequence,the productivity,vertical sintering velocity and quality of sinter are improved.
基金Supported by the Shanghai Pujiang Program(16PJ1407900)
文摘The removal of NO from oxy-fuel combustion is typically incorporated in sour gas compression purification process. This process involves the oxidation of NO to NO2 at a high pressure of 1–3 MPa, followed by absorption of NO2 by water. In this pressure range, the NO conversion rates calculated using the existing kinetic constants are often higher than those obtained experimentally. This study aimed to achieve the regression of kinetic parameters of NO oxidation based on the existing experimental results and theoretical models.Based on three existing NO oxidation mechanisms, first, the expressions for NO conversion against residence time were derived. By minimizing the mean-square errors of NO conversion ratio, the optimum kinetic rate constants were obtained. Without considering the reverse reaction for NO oxidation, similar mean-square errors for NO conversion ratio were calculated. Considering the reverse reaction for NO oxidation based on the termolecular reaction mechanism, the minimum mean-square error for NO conversion ratio was obtained. Thus, the optimum NO oxidation rate in the pressure range 0.1–3 MPa can be expressed as follows:-d[NO]/dt=d[NO2]/dt=0.0026[NO]2[O2]-0.0034[NO2]2 Detailed elementary reactions for N2/NO/NO2/O2 system were established to simulate the NO oxidation rate. A sensitivity analysis showed that the critical elementary reaction is 2 NO + O2? 2 NO2. However, the simulated NO conversions at a high pressure of 10–30 bar are still higher than the experimental values and similar to those obtained from the models without considering the reverse reaction for NO oxidation.
基金Projects(51776016,51606006) supported by the National Natural Science Foundation of ChinaProjects(3172025,3182030) supported by Beijing Natural Science Foundation,China+4 种基金Project(2017YFB0103401) supported by National Key Research and Development ProgramProject(NELMS2017A10) funded by the National Engineering Laboratory for Mobile Source Emission Control Technology,ChinaProject(2018RC017) supported by the Talents Foundation of Beijing Jiaotong University,ChinaProject(DE-EE0006864) supported by the Department of EnergyProject(201507090044) supported by China Scholarship Council
文摘Effects of butanol isomers on characteristics of combustion and emission were studied on PFI SI engine. Experiments were operated under the condition of 3 and 5 bar brake mean effective pressure (BMEP) engine loads and different equivalence ratios (φ=0.83-1.25) with engine speed of 1200 r/min using blends made of 70 vol.% gasoline and 30 vol.% butanol isomers (N30, S30, I30 and T30). The results indicated that compared with gasoline, all butanol isomer blends have higher cylinder pressure. N30 has the highest and most advanced peak pressure, and T30 shows a higher brake specific fuel consumption (BSFC) and lower brake thermal efficiency (BTE). N30 presents a lower UHC emissions and I30 has slightly higher CO emissions than other blends. For unregulated emissions, compared with gasoline, butanol isomer blends have higher acetaldehyde, and N30 produces a higher emission of 1,3-butadiene than other blends. A reduction in benzene, toluene, ethylbenzene and xylene (BTEX) has been found with butanol isomer blends.
基金supported by the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.6142A0302020517)。
文摘One-dimensional simulations with a detailed hydrogen-oxygen reaction mechanism have been performed to investigate detonation phenomenon in a combustion light gas gun(CLGG).Convection fluxes of the Navier-Stokes equations are solved using the WAF(weighted average flux)scheme HLLC Riemann solver.A high resolution fifth-order WENO scheme for the variable extrapolation at the volume interface and a fourth-order Runge-Kutta scheme for the time advancement are used.Validation tests of the stoichiometric hydrogen-oxygen deflagration to detonation transition process shows good agreement between the computed results and the analytical and documented solutions,demonstrating the reliability on the detonation simulation of the current scheme.Simulation results of the interior ballistic process of the CLGG show that the flame propagation experiences three distinct stages.The blast detonation wave causes a high-pressure shock and hazardous oscillations in the chamber and makes the projectile accelerate with fluctuations,but has only a small improvement to the muzzle velocity.
基金Supported by the Key Project of the National 973 Program of China (No.2005CB724201)the Natural Science Foundation ofBeijing (No.06C0002)the Beijing Education Commission Key Laboratory of Heat Transfer and Energy Conversion Fund(No.05005790200406).
文摘In this paper the premixed catalytic combustion emissions such as CO, unburned hydrocarbon (UHC), NOx and the temperature distribution in the catalytic monolith with ultra low concentration of Pd were studied. Three types of monoliths were used for experiments and the temperature of preheated air was respectively 50℃ , 100℃ and 200℃ . The results showed that preheated air made radial temperature in the catalytic monolith uniform which helped to avoid local hot spots so as to decrease NOx emission. The experiment also proved that the shorter monolith showed much better catalytic combustion performance than longer one and the temperature at the exit of the shorter monolith was relatively lower. On the contrary, the temperature was higher in the longer monolith and the lethal NOx emission was slightly increased.
文摘A detailed chemical mechanism to describe the combustion of natural gas in internal combustion (IC) engine has been developed,which is consisting of 233 reversible reactions and 79 species.This mechanism accounts for the oxidation of methane,ethane,propane and nitrogen.It has been tested using IC engine model of CHEMKIN 4.1.1 and experimental measurements.The performance of the proposed mechanism was evaluated at various equivalence ratios (φ=0.6 to φ=1.3),initial reactor conditions (Tini=500 to 3500 ℃; Pini=1.0 to 10 atm) and engine speed (2000-7000 rpm).The proposed kinetic mechanism shows good concordances with GRI3.0 mechanism especially in the prediction of temperature,pressure and major product species (H2O,CO2) profiles at stoichiometric conditions (φ=1.0).The experimental results of measured cylinder pressure,species fractions were also in agreement with simulation results derived from the proposed kinetic mechanism.The proposed mechanism successfully predicts the formation of gaseous pollutants (CO,NO,NO2,NH3) in the engine exhaust.Although there are some discrepancies among each simulation profile,the proposed detailed mechanism is good to represent the combustion of natural gas in IC engine.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2007AA7023)the Innovation Foundation of BUAA for Ph.D Graduates (Grant No. 430569)
文摘The scaling of the flowfield in a gas gas combustion chamber is investigated theoretically, numerically and experimentally. To obtain the scaling criterion of the gas-gas combustion flowfield, formulation analysis of the threedimensional (3D) Navier-Stokes equations for a gaseous multi-component mixing reaction flow is conducted and dimensional analysis on the gas gas combustion phenomena is also carried out. The criterion implies that the size and the pressure of the gas gas combustion chamber can be changed. Based on the criterion, multi-element injector chambers with different geometric sizes and at different chamber pressures ranging from 3 MPa to 20 MPa are numerically simulated. A multi-element injector chamber is designed and hot-fire tested at five chamber pressures from 1.64 MPa to 3.68 MPa. Wall temperature measurements are used to understand the similarity of combustion flowfields in the tests. The results have verified the similarities between combustion flowfields under different chamber pressures and geometries, with the criterion applied.
基金Sponsored by the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period(Grant No.2006BAJ03B02)
文摘This manuscript developed an adjustability test system of gas appliances,and proposed determination methods of adjustability domain and technical approach of performance testing of gas appliance,in order to develop experimental determination,quantify the product performance,design quality and combustion characteristics of gas appliances,and provide test foundation and platform for product design,performance test,quality assessment and technology upgrading for gas appliance industry aiming to multi-gas resources in China.The flexible range of gas appliances to different gases and the interchangeability domain of city gases were determined experimentally,together with the equation of combustion characteristics limit curves of gas appliances.The results showed that the second gas appliance has the biggest capability for the change of gas quality,which permits an 11.2% fluctuation in the Wobbe Index of gas;while the third gas appliance has the least capability for the change of gas quality,which only permits a 1.9% fluctuation in the Wobbe Index of gas.The paper also provides the common adjustability domain of the three gas appliances.