The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud...The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.展开更多
Elastic waves are affected by viscoelasticity during the propagation through the Earth,resulting in energy attenuation and phase distortion,in turn resulting in low seismic imaging accuracy.Therefore,viscoelasticity s...Elastic waves are affected by viscoelasticity during the propagation through the Earth,resulting in energy attenuation and phase distortion,in turn resulting in low seismic imaging accuracy.Therefore,viscoelasticity should be considered in seismic migration imaging.We propose a Q compensated multicomponent elastic Gaussian beam migration(Q-EGBM)method to(1)separate the elastic-wave data into longitudinal(P)and transverse(S)waves to perform PP-wave and PS-wave imaging;(2)recover the amplitude loss caused by attenuation;(3)correct phase distortions caused by dispersion;(4)improve the resolution of migration imaging.In this paper,to accomplish(2),(3),and(4),we derive complex-valued traveltimes in viscoelastic media.The results of numerical experiments using a simple five-layer model and a sophisticated BP gas model show that the method presented here has significant advantages in recovering energy decay and correcting phase distortion,as well as significantly improving imaging resolution.展开更多
Olefin solution polymerization can be used to obtain high-performance polyolefin materials that cannot be obtained via other polymerization processes.Polyolefin elastomers(POE)are a typical example.Due to cost,only a ...Olefin solution polymerization can be used to obtain high-performance polyolefin materials that cannot be obtained via other polymerization processes.Polyolefin elastomers(POE)are a typical example.Due to cost,only a few linear a-olefins(e.g.,1-butene,1-hexene,and 1-octene)are used as comonomers in solution polymerization in industry.However,a-olefin comonomers with other structures may have different effects on polymerization in comparison with common linear ones.Moreover,the properties of the corresponding materials may differ significantly.In this work,copolymers of ethylene with linear and endcyclized a-olefins are synthesized using a metallocene catalyst.The copolymerization of ethylene with linear a-olefins results in a higher turn-over frequency(TOF)and lower incorporation than copolymerization with end-cyclized a-olefins,which may indicate that end-cyclized a-olefins have a higher coordination probability and lower insertion rate.In this reaction,the comonomer is distributed randomly in the polymer chain and efficiently destroys crystallization.End-cyclized a-olefins exhibit a much stronger crystallization destructive capacity(CDC)in the copolymer than linear a-olefins,possibly because linear a-olefins act mainly in the radial direction of the main chain of the polymer,while end-cyclized a-olefins act mainly in the axial direction of the main chain.展开更多
Traditional Chinese medicine decoction is a complex polydispersed phase system containing real solution,colloid solution,emulsion and suspension.The compound decoction of traditional Chinese medicine has complex compo...Traditional Chinese medicine decoction is a complex polydispersed phase system containing real solution,colloid solution,emulsion and suspension.The compound decoction of traditional Chinese medicine has complex components,including saponins,alkaloids,polysaccharides,flavonoids,amino acids and so on,which can be self-assembled to form gels,fibers,micelles,vesicles and so on.The self-assembled nano-phase not only neutralizes the single drug and reduces the toxicity and side effects,but also has its own pharmacological effects,which complement each other to achieve synergistic effect,so as to achieve the role of drug supplement,which is of research significance.The formation principle,solubilization and synergism principle and characterization method of multi-component self-assembly of traditional Chinese medicine compound decoction are discussed in this paper.展开更多
An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effe...An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.展开更多
During extended warranty(EW)period,maintenance events play a key role in controlling the product systems within normal operations.However,the modelling of failure process and maintenance optimization is complicated ow...During extended warranty(EW)period,maintenance events play a key role in controlling the product systems within normal operations.However,the modelling of failure process and maintenance optimization is complicated owing to the complex features of the product system,namely,components of the multi-component system are interdependent with each other in some form.For the purpose of optimizing the EW pricing decision of the multi-component system scientifically and rationally,taking the series multi-component system with economic dependence sold with EW policy as a research object,this paper optimizes the imperfect preventive maintenance(PM)strategy from the standpoint of EW cost.Taking into consideration adjusting the PM moments of the components in the system,a group maintenance model is developed,in which the system is repaired preventively in accordance with a specified PM base interval.In order to compare with the system EW cost before group maintenance,the system EW cost model before group maintenance is developed.Numerical example demonstrates that offering group maintenance programs can reduce EW cost of the system to a great extent,thereby reducing the EW price,which proves to be a win-win strategy to manufacturers and users.展开更多
Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacr...Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacrylamide materials.Two new drag reducers were synthesized from acrylamide(AM),sodium acrylate(Na AA)and a cationic modified monomer(AQAS1 or AQAS2)via aqueous solution polymerization,and the copolymers were named P(AM/Na AA/AQAS1)and P(AM/Na AA/AQAS2),respectively.The structures of the drag reduction agents were confirmed by IR and1H NMR spectroscopies.The molecular weight(Mw)of P(AM/Na AA/AQAS1)was 1.79×10^(6)g/mol.When the copolymer concentration was 1000 mg/L and the flow rate was 45 L/min,in fresh water the highest drag reduction rate was 75.8%,in 10,000 mg/L Na Cl solution the drag reduction rate decreased to 72.9%.The molecular weight of P(AM/Na AA/AQAS2)was 3.17×10^(6)g/mol.When the copolymer concentration was500 mg/L and the flow rate was 45 L/min,the drag reduction rate reached 75.2%,and in 10,000 mg/L Na Cl solution the drag reduction rate was 73.3%,decreased by approximately 1.9%.The drag reduction rate for partially hydrolyzed polyacrylamide(HPAM)was also investigated,and the results showed that the drag reduction rates for 500 and 1000 mg/L HPAM solutions were merely 43.2%and 49.0%in brine,respectively.Compared with HPAM,both of the above copolymers presented better drag reduction capacities.展开更多
Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cool...Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.展开更多
Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copo...Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copolymers is fundamental to advancing polymer research and development. In this comprehensive review, we explore various preparation methods, including free radical, anionic, and cationic polymerization, utilized for synthesizing homopolymers and copolymers. Furthermore, we investigate solvent choices commonly employed for polymer characterization, ranging from neat conditions, polar protic and polar aprotic solvents. We also explored characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). In addition to industrial applications, we highlight the diverse biological applications of homopolymers, poly(2-hydroxyethyl methacrylate) (pHEMA) and polystyrene, which find its extensive use in biomedicine. By synthesizing and analyzing this wealth of information, this review aims to provide a comprehensive understanding of the synthesis, characterization, and applications of homopolymers and copolymers, with a particular focus on their biological applications. This holistic approach not only contributes to advancements in polymer science and technology but also fosters innovation in biomedicine, ultimately benefiting human health and well-being.展开更多
A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance ti...A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance time can be shared by more than one component, and the system availability can be improved. Then, the generation characteristics of the random failure time are researched based on the replacement maintenance and the minima[ maintenance. Furthermore, by choosing the opportunistic replacement ages of each component as opti- mized variables, a simulation algorithm based on an opportunistic maintenance policy is designed to maximize the total availability. Finally, the simulation result shows the validity of the algorithm by an example.展开更多
Bonded type RE3+ doped luminescent co-polymer was synthesized by solution free radical copolymerization. The influence of charge sequence, monomers and co-polymerized method on properties and structures of the co-poly...Bonded type RE3+ doped luminescent co-polymer was synthesized by solution free radical copolymerization. The influence of charge sequence, monomers and co-polymerized method on properties and structures of the co-polymers was studied. The emission intensity of the co-polymers at different RE3+ concentrations was tested. The results showed that the co-polymers of Eu-PSt and Eu-PMMA both had wide absorption peak at 200-400 nm and the strongest peak appeared at 235 nm. The fluorescent intensity of Eu3+ doped polystyrene co-polymer was stronger than that of Eu3+ doped PMMA copolymer. The characteristic emission of europium ions was observed in the co-polymers. The copolymer doped with rare earth elements showed the 'sensitization effect' for the central ions. The bonded-type rare earth copolymer not only enhanced the energy transfer efficiency, but also improved the fluorescence intensity by increasing the rigidity of main and side chain.展开更多
Miniemulsion copolymerization of butyl mathacrylate (BMA) with fluoroacrylate (HFMA, TFMA) was carried out at 70 ℃ by employing potassium persulphate (KPS) as initiator. Copolymer compositions at low conversion...Miniemulsion copolymerization of butyl mathacrylate (BMA) with fluoroacrylate (HFMA, TFMA) was carried out at 70 ℃ by employing potassium persulphate (KPS) as initiator. Copolymer compositions at low conversion levels were determined by ^1H NMR spectra techniques. The reactivity ratios were evaluated by employing Kellen-Tudos (K-T) methods, which yields the apparent reactivity ratios, rBMA = 0.74, rHFMA = 0.87 and rBMA = 0.73, rTFMA = 0.75, respectively, and Q- and e-values of HFMA and TFMA were calculated by the Alfrey-Price method. The results show that HFMA and TFMA are more active than BMA, and the cross-propagation rate constant is greater than the self-propagation one in these two copolymerizations.展开更多
In this paper, the capabilities of grafting acrylonitrile (AN) onto starch initiated by Fe(III)-TU, V(V)-TU, Cr(VI)-TU, Mn(VII)-TU redox systems were compared in the presence of sulfuric acid of different concentratio...In this paper, the capabilities of grafting acrylonitrile (AN) onto starch initiated by Fe(III)-TU, V(V)-TU, Cr(VI)-TU, Mn(VII)-TU redox systems were compared in the presence of sulfuric acid of different concentrations. It was shown that the grafting capability of Mn(VII)-TU is the highest in these initiating systems. Using Mn (VII-TU as initiator, the effects of various acids (HClO4, H2SO4, HNO3, HCl) on the graft copolymerization of acrylonitrile onto starch were discussed, and the capabilities of graft copolymerization of methyl methacrylate (MMA), acrylamide (AM), acrylic acid (AA) onto starch were investigated. The experimental results show that the order of the influences of different acids is HClO4 > H2SO4 > HNO3 > HCl, and the order of grafting capabilities of different monomers grafted onto starch is MMA > AN > AM > AA. The structure and morphology of graft, copolymers were studied with infrared spectroscopy and scanning electron microscopy. The size, shape and roughness of surface of the grafted starch granules are changed after grafting.展开更多
A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and...A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
Rare-earth ternary catalysts Y(CCl3COO)3-ZnR2-glycerin were prepared for the copolymerization of carbon dioxide and propylene oxide (PO), where dialkylzincs (ZnR2) were diethylzinc, di(n-propyl)zinc, di(n-bu...Rare-earth ternary catalysts Y(CCl3COO)3-ZnR2-glycerin were prepared for the copolymerization of carbon dioxide and propylene oxide (PO), where dialkylzincs (ZnR2) were diethylzinc, di(n-propyl)zinc, di(n-butyl)zinc, di(i-propyl)zinc, di(i-butyl)zinc, di(s-butyl)zinc,respectively. The Y(CCl3COO)3-ZnR2-glycerin catalysts displayed the highest catalytic activity at the molar ratio of Y(CCl3COO)3:ZnR2:glycerin = 1:20:10. In the same copolymerization condition, catalysts containing dialkylzincs with branched alkyl group showed lower catalytic activity than that with primary alkyl group. For those catalysts including dialkylzincs with primary alkyl group, their catalytic activity decreases with increasing number of carbon atom in the alkyl group with the following sequence: Y(CCl3COO)3-ZnEt2-glycerin 〉 Y(CCl3COO)3-Zn(n- Pr)2-glycerin〉Y(CCl3COO)3-Zn(n-Bu)2-glycerin. However, the alkyl group in the dialkylzinc does not influence the insertion of PO into the propagation chain end.展开更多
Seismic AVO analysis now is one of the major criteria for recognizing potential hydrocarbon reservoirs. Volume scattering information that carries information of stratigraphic structure, lithology, and pore fluid is m...Seismic AVO analysis now is one of the major criteria for recognizing potential hydrocarbon reservoirs. Volume scattering information that carries information of stratigraphic structure, lithology, and pore fluid is more useful for seismic exploration. However, traditional AVO analysis is based on the Zoeppritz equation, which only contains single-interface information. Quantitative interpretation of the thin bed thickness is essential to thin bed structure interpretation, reservoir description, and lateral reservoir prediction. The reflectance spectrum equation based on the elastic wave propagation matrix in the frequency domain derived in this paper shows that both interfaces and intervals have an effect on amplitude. The equation includes information about both single interfaces and volume scattering. Since the reflectance spectrum equation is a continuous function of thin bed thickness and frequency, it is convenient to analyze the effects of a single frequency and bed thickness on the reflectance spectrum. Bed thickness is analyzable until the bed thickness is vanishingly small. These characteristics can't be achieved by Fourier transform. The propagation of seismic waves is complex and various wave modes exist simultaneously. The reflectance spectrum includes various propagating wave modes and multiples and is better for simulating multi-component thin bed AVO responses than the ray tracing method.展开更多
Emulsion copolymerization of styrene and ethylene catalyzed by a series of neutral nickel(Ⅱ) complexes was carried out in an aqueous system to give high-molecular-weight copolymers.The copolymers and emulsions were c...Emulsion copolymerization of styrene and ethylene catalyzed by a series of neutral nickel(Ⅱ) complexes was carried out in an aqueous system to give high-molecular-weight copolymers.The copolymers and emulsions were characterized by an array of techniques including NMR,GPC,TEM,WAXD and DSC.The results indicate that the copolymers obtained are mostly block copolymers of polyethylene with random insertion of styrene units,and their M_W is in the range of 10~5-10~6.By enhancing the electron withdrawing of the s...展开更多
Copolymerization of styrene (St) with N-phenylmaleimide (NPMI) was studied with rare earth coordination catalyst Nd(naph)3-AlEt3 in toluene. Characterization of the copolymers showed that the copolymers possess an al...Copolymerization of styrene (St) with N-phenylmaleimide (NPMI) was studied with rare earth coordination catalyst Nd(naph)3-AlEt3 in toluene. Characterization of the copolymers showed that the copolymers possess an alternating structure.展开更多
The monodispersed polymeric particles with an unusual structure were prepared by the dispersion copolymerization of acrylonitrile/styrene(AN/St) in mixed solvents of ethanol/water by using the poly(N-isopropylacryl...The monodispersed polymeric particles with an unusual structure were prepared by the dispersion copolymerization of acrylonitrile/styrene(AN/St) in mixed solvents of ethanol/water by using the poly(N-isopropylacrylamide) (PNIPAAm) macromonomer as a reaction stabilizer. It was found that the AN monomer plays a key role in the formation of the particles with special morphology analyzed via scanning electron microscopy (SEM). The reaction parameters have remarkable influences on the particle size and morphology. The particles possess a thermosensitive property according to the result of laser light scattering(LLS).展开更多
i-PP/m-EPR reactor alloy were prepared through ethylene/propylene slurry copolymerization catalyzed by metallocene(rac-Et(Ind)_2ZrCl_2)supported on porous iPP particles.Polar monomer(dihydromyrcene alcohol)treated wit...i-PP/m-EPR reactor alloy were prepared through ethylene/propylene slurry copolymerization catalyzed by metallocene(rac-Et(Ind)_2ZrCl_2)supported on porous iPP particles.Polar monomer(dihydromyrcene alcohol)treated with triethyaluminum was added in the preparation of porous iPP particles to introduce hydroxyl groups and thus enhance the ability for chemically supporting the metallocene catalyst.The effects of MAO/Zr ratio and monomer composition in feed on the reaction activity and property of polymer were i...展开更多
基金funded by the National Natural Science Foundation of China(No.51806236,No.51806239)the Fundamental Research Funds for the Central Universities(No.2015XKMS059)+1 种基金Shaanxi Postdoctoral Fund Project(No.2018BSHEDZZ56)Foundation of Key Laboratory of Thermo-Fluid Science and Engineering(Xi'an Jiaotong University),Ministry of Education(No.KLTFSE2017KF01)。
文摘The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.
文摘Elastic waves are affected by viscoelasticity during the propagation through the Earth,resulting in energy attenuation and phase distortion,in turn resulting in low seismic imaging accuracy.Therefore,viscoelasticity should be considered in seismic migration imaging.We propose a Q compensated multicomponent elastic Gaussian beam migration(Q-EGBM)method to(1)separate the elastic-wave data into longitudinal(P)and transverse(S)waves to perform PP-wave and PS-wave imaging;(2)recover the amplitude loss caused by attenuation;(3)correct phase distortions caused by dispersion;(4)improve the resolution of migration imaging.In this paper,to accomplish(2),(3),and(4),we derive complex-valued traveltimes in viscoelastic media.The results of numerical experiments using a simple five-layer model and a sophisticated BP gas model show that the method presented here has significant advantages in recovering energy decay and correcting phase distortion,as well as significantly improving imaging resolution.
文摘Olefin solution polymerization can be used to obtain high-performance polyolefin materials that cannot be obtained via other polymerization processes.Polyolefin elastomers(POE)are a typical example.Due to cost,only a few linear a-olefins(e.g.,1-butene,1-hexene,and 1-octene)are used as comonomers in solution polymerization in industry.However,a-olefin comonomers with other structures may have different effects on polymerization in comparison with common linear ones.Moreover,the properties of the corresponding materials may differ significantly.In this work,copolymers of ethylene with linear and endcyclized a-olefins are synthesized using a metallocene catalyst.The copolymerization of ethylene with linear a-olefins results in a higher turn-over frequency(TOF)and lower incorporation than copolymerization with end-cyclized a-olefins,which may indicate that end-cyclized a-olefins have a higher coordination probability and lower insertion rate.In this reaction,the comonomer is distributed randomly in the polymer chain and efficiently destroys crystallization.End-cyclized a-olefins exhibit a much stronger crystallization destructive capacity(CDC)in the copolymer than linear a-olefins,possibly because linear a-olefins act mainly in the radial direction of the main chain of the polymer,while end-cyclized a-olefins act mainly in the axial direction of the main chain.
基金This work was supported by General Program of National Natural Science Foundation of China(No.816736112017):General Project of Heilongjiang Provincial Science Foundation(No.H2016076)Harbin Special Fund for Scientific and Technological Innovation Talent Research(No.2017RAQXJ090)。
文摘Traditional Chinese medicine decoction is a complex polydispersed phase system containing real solution,colloid solution,emulsion and suspension.The compound decoction of traditional Chinese medicine has complex components,including saponins,alkaloids,polysaccharides,flavonoids,amino acids and so on,which can be self-assembled to form gels,fibers,micelles,vesicles and so on.The self-assembled nano-phase not only neutralizes the single drug and reduces the toxicity and side effects,but also has its own pharmacological effects,which complement each other to achieve synergistic effect,so as to achieve the role of drug supplement,which is of research significance.The formation principle,solubilization and synergism principle and characterization method of multi-component self-assembly of traditional Chinese medicine compound decoction are discussed in this paper.
基金supported by the National Natural Science Foundation of China(No.52174038 and No.52004307)China Petroleum Science and Technology Project-major project-Research on tight oil-shale oil reservoir engineering methods and key technologies in Ordos Basin(ZLZX2020-02-04)Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC015).
文摘An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.
基金supported by the National Natural Science Foundation of China(71871219).
文摘During extended warranty(EW)period,maintenance events play a key role in controlling the product systems within normal operations.However,the modelling of failure process and maintenance optimization is complicated owing to the complex features of the product system,namely,components of the multi-component system are interdependent with each other in some form.For the purpose of optimizing the EW pricing decision of the multi-component system scientifically and rationally,taking the series multi-component system with economic dependence sold with EW policy as a research object,this paper optimizes the imperfect preventive maintenance(PM)strategy from the standpoint of EW cost.Taking into consideration adjusting the PM moments of the components in the system,a group maintenance model is developed,in which the system is repaired preventively in accordance with a specified PM base interval.In order to compare with the system EW cost before group maintenance,the system EW cost model before group maintenance is developed.Numerical example demonstrates that offering group maintenance programs can reduce EW cost of the system to a great extent,thereby reducing the EW price,which proves to be a win-win strategy to manufacturers and users.
基金supported by the National Natural Science Foundation of China(Project Nos.51774062 and 52274032)Scientific and Technological Key Research Program of Chongqing Municipal Education Commission(KJZD-K201901502)+1 种基金General Project of Chongqing Natural Science Foundation(CSTB2022NSCQMSX0349)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202313101)。
文摘Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacrylamide materials.Two new drag reducers were synthesized from acrylamide(AM),sodium acrylate(Na AA)and a cationic modified monomer(AQAS1 or AQAS2)via aqueous solution polymerization,and the copolymers were named P(AM/Na AA/AQAS1)and P(AM/Na AA/AQAS2),respectively.The structures of the drag reduction agents were confirmed by IR and1H NMR spectroscopies.The molecular weight(Mw)of P(AM/Na AA/AQAS1)was 1.79×10^(6)g/mol.When the copolymer concentration was 1000 mg/L and the flow rate was 45 L/min,in fresh water the highest drag reduction rate was 75.8%,in 10,000 mg/L Na Cl solution the drag reduction rate decreased to 72.9%.The molecular weight of P(AM/Na AA/AQAS2)was 3.17×10^(6)g/mol.When the copolymer concentration was500 mg/L and the flow rate was 45 L/min,the drag reduction rate reached 75.2%,and in 10,000 mg/L Na Cl solution the drag reduction rate was 73.3%,decreased by approximately 1.9%.The drag reduction rate for partially hydrolyzed polyacrylamide(HPAM)was also investigated,and the results showed that the drag reduction rates for 500 and 1000 mg/L HPAM solutions were merely 43.2%and 49.0%in brine,respectively.Compared with HPAM,both of the above copolymers presented better drag reduction capacities.
基金financially supported by a grant provided by Mitsubishi Heavy Industries。
文摘Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.
文摘Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copolymers is fundamental to advancing polymer research and development. In this comprehensive review, we explore various preparation methods, including free radical, anionic, and cationic polymerization, utilized for synthesizing homopolymers and copolymers. Furthermore, we investigate solvent choices commonly employed for polymer characterization, ranging from neat conditions, polar protic and polar aprotic solvents. We also explored characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). In addition to industrial applications, we highlight the diverse biological applications of homopolymers, poly(2-hydroxyethyl methacrylate) (pHEMA) and polystyrene, which find its extensive use in biomedicine. By synthesizing and analyzing this wealth of information, this review aims to provide a comprehensive understanding of the synthesis, characterization, and applications of homopolymers and copolymers, with a particular focus on their biological applications. This holistic approach not only contributes to advancements in polymer science and technology but also fosters innovation in biomedicine, ultimately benefiting human health and well-being.
文摘A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance time can be shared by more than one component, and the system availability can be improved. Then, the generation characteristics of the random failure time are researched based on the replacement maintenance and the minima[ maintenance. Furthermore, by choosing the opportunistic replacement ages of each component as opti- mized variables, a simulation algorithm based on an opportunistic maintenance policy is designed to maximize the total availability. Finally, the simulation result shows the validity of the algorithm by an example.
基金Project supported by the Special Funds for Major State Research Projectsthe National Natural Science Foundation of China (50373034)
文摘Bonded type RE3+ doped luminescent co-polymer was synthesized by solution free radical copolymerization. The influence of charge sequence, monomers and co-polymerized method on properties and structures of the co-polymers was studied. The emission intensity of the co-polymers at different RE3+ concentrations was tested. The results showed that the co-polymers of Eu-PSt and Eu-PMMA both had wide absorption peak at 200-400 nm and the strongest peak appeared at 235 nm. The fluorescent intensity of Eu3+ doped polystyrene co-polymer was stronger than that of Eu3+ doped PMMA copolymer. The characteristic emission of europium ions was observed in the co-polymers. The copolymer doped with rare earth elements showed the 'sensitization effect' for the central ions. The bonded-type rare earth copolymer not only enhanced the energy transfer efficiency, but also improved the fluorescence intensity by increasing the rigidity of main and side chain.
基金supported by National Natural Science Foundation of China(Nos.20576117 and 20806067)China Postdoctoral Science Foundation(No.20070420230).
文摘Miniemulsion copolymerization of butyl mathacrylate (BMA) with fluoroacrylate (HFMA, TFMA) was carried out at 70 ℃ by employing potassium persulphate (KPS) as initiator. Copolymer compositions at low conversion levels were determined by ^1H NMR spectra techniques. The reactivity ratios were evaluated by employing Kellen-Tudos (K-T) methods, which yields the apparent reactivity ratios, rBMA = 0.74, rHFMA = 0.87 and rBMA = 0.73, rTFMA = 0.75, respectively, and Q- and e-values of HFMA and TFMA were calculated by the Alfrey-Price method. The results show that HFMA and TFMA are more active than BMA, and the cross-propagation rate constant is greater than the self-propagation one in these two copolymerizations.
文摘In this paper, the capabilities of grafting acrylonitrile (AN) onto starch initiated by Fe(III)-TU, V(V)-TU, Cr(VI)-TU, Mn(VII)-TU redox systems were compared in the presence of sulfuric acid of different concentrations. It was shown that the grafting capability of Mn(VII)-TU is the highest in these initiating systems. Using Mn (VII-TU as initiator, the effects of various acids (HClO4, H2SO4, HNO3, HCl) on the graft copolymerization of acrylonitrile onto starch were discussed, and the capabilities of graft copolymerization of methyl methacrylate (MMA), acrylamide (AM), acrylic acid (AA) onto starch were investigated. The experimental results show that the order of the influences of different acids is HClO4 > H2SO4 > HNO3 > HCl, and the order of grafting capabilities of different monomers grafted onto starch is MMA > AN > AM > AA. The structure and morphology of graft, copolymers were studied with infrared spectroscopy and scanning electron microscopy. The size, shape and roughness of surface of the grafted starch granules are changed after grafting.
文摘A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.20025414 and 50003009).
文摘Rare-earth ternary catalysts Y(CCl3COO)3-ZnR2-glycerin were prepared for the copolymerization of carbon dioxide and propylene oxide (PO), where dialkylzincs (ZnR2) were diethylzinc, di(n-propyl)zinc, di(n-butyl)zinc, di(i-propyl)zinc, di(i-butyl)zinc, di(s-butyl)zinc,respectively. The Y(CCl3COO)3-ZnR2-glycerin catalysts displayed the highest catalytic activity at the molar ratio of Y(CCl3COO)3:ZnR2:glycerin = 1:20:10. In the same copolymerization condition, catalysts containing dialkylzincs with branched alkyl group showed lower catalytic activity than that with primary alkyl group. For those catalysts including dialkylzincs with primary alkyl group, their catalytic activity decreases with increasing number of carbon atom in the alkyl group with the following sequence: Y(CCl3COO)3-ZnEt2-glycerin 〉 Y(CCl3COO)3-Zn(n- Pr)2-glycerin〉Y(CCl3COO)3-Zn(n-Bu)2-glycerin. However, the alkyl group in the dialkylzinc does not influence the insertion of PO into the propagation chain end.
基金The research was supported by the Notion's Fifteenth Scientific and Technological Breakthrough Project: Research of Vector and Mountain Seismic Exploration (No.2001BA605A-12).
文摘Seismic AVO analysis now is one of the major criteria for recognizing potential hydrocarbon reservoirs. Volume scattering information that carries information of stratigraphic structure, lithology, and pore fluid is more useful for seismic exploration. However, traditional AVO analysis is based on the Zoeppritz equation, which only contains single-interface information. Quantitative interpretation of the thin bed thickness is essential to thin bed structure interpretation, reservoir description, and lateral reservoir prediction. The reflectance spectrum equation based on the elastic wave propagation matrix in the frequency domain derived in this paper shows that both interfaces and intervals have an effect on amplitude. The equation includes information about both single interfaces and volume scattering. Since the reflectance spectrum equation is a continuous function of thin bed thickness and frequency, it is convenient to analyze the effects of a single frequency and bed thickness on the reflectance spectrum. Bed thickness is analyzable until the bed thickness is vanishingly small. These characteristics can't be achieved by Fourier transform. The propagation of seismic waves is complex and various wave modes exist simultaneously. The reflectance spectrum includes various propagating wave modes and multiples and is better for simulating multi-component thin bed AVO responses than the ray tracing method.
文摘Emulsion copolymerization of styrene and ethylene catalyzed by a series of neutral nickel(Ⅱ) complexes was carried out in an aqueous system to give high-molecular-weight copolymers.The copolymers and emulsions were characterized by an array of techniques including NMR,GPC,TEM,WAXD and DSC.The results indicate that the copolymers obtained are mostly block copolymers of polyethylene with random insertion of styrene units,and their M_W is in the range of 10~5-10~6.By enhancing the electron withdrawing of the s...
基金This project was supported by the National Natural Science Foundation of China. (No.29974024,20254001)
文摘Copolymerization of styrene (St) with N-phenylmaleimide (NPMI) was studied with rare earth coordination catalyst Nd(naph)3-AlEt3 in toluene. Characterization of the copolymers showed that the copolymers possess an alternating structure.
文摘The monodispersed polymeric particles with an unusual structure were prepared by the dispersion copolymerization of acrylonitrile/styrene(AN/St) in mixed solvents of ethanol/water by using the poly(N-isopropylacrylamide) (PNIPAAm) macromonomer as a reaction stabilizer. It was found that the AN monomer plays a key role in the formation of the particles with special morphology analyzed via scanning electron microscopy (SEM). The reaction parameters have remarkable influences on the particle size and morphology. The particles possess a thermosensitive property according to the result of laser light scattering(LLS).
基金National Basic Research Program of China(No.2005CB623804)the National Natural Science Foundation of China(No.20476090).
文摘i-PP/m-EPR reactor alloy were prepared through ethylene/propylene slurry copolymerization catalyzed by metallocene(rac-Et(Ind)_2ZrCl_2)supported on porous iPP particles.Polar monomer(dihydromyrcene alcohol)treated with triethyaluminum was added in the preparation of porous iPP particles to introduce hydroxyl groups and thus enhance the ability for chemically supporting the metallocene catalyst.The effects of MAO/Zr ratio and monomer composition in feed on the reaction activity and property of polymer were i...