The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with inte...The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem.We consider miscible(water and glycerol)and immiscible(water and high-viscosity silicone oil PMS-1000)fluids under subsonic oscillations perpendicular to the interface.Observations show that the interface shape depends on the amplitude and frequency of oscillations.The interface is undisturbed only in the absence of oscillations.Under small amplitudes,the interface between water and glycerol widens due to mixing.When the critical amplitude is reached,the interface becomes unstable to the fingering instability:Aqueous fingers penetrate the high-viscosity glycerol and induce intensive mixing of miscible fluids and associated decay of the instability.After the disappearance of the fingers,the interface takes a U-shape in the central part of the cell.A similar effect is observed for immiscible fluids:The oscillating interface tends to bend to the side of a high-viscosity fluid.Again,when the critical amplitude is reached,the fingering instability arises at the convex interface.This paper focuses on the causes of bending of the initially undisturbed interface between miscible or immiscible fluids.For this purpose,we measure the steady flow velocity near the interface and in the bulk of a high-viscosity fluid using Particle Image Velocimetry(PIV).展开更多
In modern chemical engineering processes, solid interface involvement is the most important component of process intensification techniques, such as nanoporous membrane separation and heterogeneous catalysis. The fund...In modern chemical engineering processes, solid interface involvement is the most important component of process intensification techniques, such as nanoporous membrane separation and heterogeneous catalysis. The fundamental mechanism underlying interfacial transport remains incompletely understood given the complexity of heterogeneous interfacial molecular interactions and the high nonideality of the fluid involved. Thus, understanding the effects of interface-induced fluid microstructures on flow resistance is the first step in further understanding interfacial transport. Molecular simulation has become an indispensable method for the investigation of fluid microstructure and flow resistance. Here, we reviewed the recent research progress of our group and the latest relevant works to elucidate the contribution of interface-induced fluid microstructures to flow resistance.We specifically focused on water, ionic aqueous solutions, and alcohol–water mixtures given the ubiquity of these fluid systems in modern chemical engineering processes. We discussed the effects of the interfaceinduced hydrogen bond networks of water molecules, the ionic hydration of ionic aqueous solutions, and the spatial distributions of alcohol and alcohol–water mixtures on flow resistance on the basis of the distinctive characteristics of different fluid systems.展开更多
In modern chemical engineering processes, the involvement of solid/fluid interface is the most important component of process intensification techniques, such as confined membrane separation and catalysis. In the revi...In modern chemical engineering processes, the involvement of solid/fluid interface is the most important component of process intensification techniques, such as confined membrane separation and catalysis. In the review, we summarized the research progress of the latest theoretical and experimental works to elucidate the contribution of interface to the fluid properties and structures at nano-and micro-scale. We mainly focused on water, alcohol aqueous solution, and ionic liquids, because they are classical systems in interfacial science and/or widely involved in the industrialization process. Surface-induced fluids were observed in all reviewed systems and played a critical role in physicochemical properties and structures of outside fluid. It can even be regarded as a new interface, when the adsorption layer has a strong interaction with the solid surface. Finally, we proposed a perspective on scientific challenges in the modern chemical engineering processes and outlined future prospects.展开更多
The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.I...The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.In the absence of modulation of the rotation speed,the interphase boundary has the shape of a short axisymmetric cylinder.A new effect has been discovered,under the influence of rotation speed modulation,the interface takes on a new dynamic equilibrium state.A more viscous liquid covers the end boundaries of the layer in the form of thin films,which have the shape of round spots of almost constant radius;with increasing amplitude of the velocity modulation,the wetting boundary expands.It is found that upon reaching the critical amplitude of oscillations,the film of a viscous liquid loses stability,and the outer edge of the wetting spot collapses and takes on a feathery structure.It is shown that this threshold is caused by the development of the Kelvin-Helmholtz oscillatory instability of the film.The spreading radius of a spot of light viscous liquid and its stability are studied depending on the rotation rate,amplitude,and frequency of rotation speed modulation.The discovered averaged effects are determined by different oscillatory interaction of fluids with the end-walls of the cell,due to different viscosities.The effect of films forming can find application in technological processes to intensify mass transfer at interphase boundaries.展开更多
Seasonal frozen soil accounts for about 53.50%of the land area in China.Frozen soil is a complex multiphase system where ice,water,soil,and air coexist.The distribution and migration of salts in frozen soil during soi...Seasonal frozen soil accounts for about 53.50%of the land area in China.Frozen soil is a complex multiphase system where ice,water,soil,and air coexist.The distribution and migration of salts in frozen soil during soil freezing are notably different from those in unfrozen soil areas.However,little knowledge is available about the process and mechanisms of salt migration in frozen soil.This study explores the mechanisms of salt migration at the ice-liquid interface during the freezing of pore fluids through batch experiments.The results are as follows.The solute concentrations of liquid and solid phases at the ice-liquid interface(C*_(L),C*_(S))gradually increased at the initial stage of freezing and remained approximately constant at the middle stage.As the ice-liquid interface advanced toward the system boundary,the diffusion of the liquid phase was blocked but the ice phase continued rejecting salts.As a result,C*_(L)and C*_(S)rapidly increased at the final stage of freezing.The distribution characteristics of solutes in ice and the liquid phases before C*_(L)and C*_(S)became steady were mainly affected by the freezing temperature,initial concentrations,and particle-size distribution of media(quartz sand and kaolin).In detail,the lower the freezing temperature and the better the particle-size distribution of media,the higher the solute proportion in the ice phase at the initial stage of freezing.Meanwhile,the increase in concentration first promoted but then inhibited the increase of solutes in the ice phase.These results have insights and scientific significance for the tackling of climate change,the environmental protection of groundwater and soil,and infrastructure protection such as roads,among other things.展开更多
The hydraulic fracturing is still an effective technology for the exploitation of coalbed methane (CBM). However, after the hydraulic fracturing operation, the high water cut or sudden water flooding of CBM well usu...The hydraulic fracturing is still an effective technology for the exploitation of coalbed methane (CBM). However, after the hydraulic fracturing operation, the high water cut or sudden water flooding of CBM well usually occurs due to upward migration of bottom water, which is called water channeling (water inrush). This problem has been severely limiting the hydraulic fracturing effect of CBM wells. Some studies show that the aquifuge and cement paste themselves will not crush under hydraulic fracturing pressure. Water channeling often occurs at cement- aquifuge interface (CAI).展开更多
Enhancement of two fluid mixing was numerically studied by tracking the multi fluid interfaces. Level set equations were used to capture the interfaces, and flow field was obtained by upwind TVD scheme to solve 2D Eul...Enhancement of two fluid mixing was numerically studied by tracking the multi fluid interfaces. Level set equations were used to capture the interfaces, and flow field was obtained by upwind TVD scheme to solve 2D Eulerian equations. The boundary conditions at interface of two fluids are determined by Ghost fluid method (GFM). The distributions of fluid parameters, such as pressure and density, were got at different time steps. The results show that the method presented in this paper can track the density discontinuity perfectly. Superior to previous results, the density discontinuity remains sharper. Also, the mixing of fluids can be greatly enhanced by setting disturbances along the initial fluid interfaces.展开更多
Two interface capturing methods are studied for multi fluid flows, governed by the stiffened gas equation of state. The mixture type interface capturing algorithm uses a simple volume fraction model Euler equations wr...Two interface capturing methods are studied for multi fluid flows, governed by the stiffened gas equation of state. The mixture type interface capturing algorithm uses a simple volume fraction model Euler equations written in a quasi conservative form, which is solved by a standard high resolution piecewise parabolic method (PPM) with multi fluid Riemann solver. The level set interface capturing method uses a narrow band ghost fluid method (GFM) with no numerical smearing. Several examples are presented and compared for one and two dimensions, which show the feasibility of the two methods applied to various multi fluid problems.展开更多
For solid-fluid interaction, one of the phase-density equations in diffuse interface models is degenerated to a "0 = 0" equation when the volume fraction of a certain phase takes the value of zero or unity. ...For solid-fluid interaction, one of the phase-density equations in diffuse interface models is degenerated to a "0 = 0" equation when the volume fraction of a certain phase takes the value of zero or unity. This is because the conservative variables in phasedensity equations include volume fractions. The degeneracy can be avoided by adding an artificial quantity of another material into the pure phase. However, nonphysical waves,such as shear waves in fluids, are introduced by the artificial treatment. In this paper,a transport diffuse interface model, which is able to treat zero/unity volume fractions, is presented for solid-fluid interaction. In the proposed model, a new formulation for phase densities is derived, which is unrelated to volume fractions. Consequently, the new model is able to handle zero/unity volume fractions, and nonphysical waves caused by artificial volume fractions are prevented. One-dimensional and two-dimensional numerical tests demonstrate that more accurate results can be obtained by the proposed model.展开更多
This paper presents a monolithic approach to the thermal fluidstructure interaction (FSI) with nonconforming interfaces. The thermal viscous flow is governed by the Boussinesq approximation and the incompressible Na...This paper presents a monolithic approach to the thermal fluidstructure interaction (FSI) with nonconforming interfaces. The thermal viscous flow is governed by the Boussinesq approximation and the incompressible NavierStokes equations. The motion of the fluid domain is accounted for by an arbitrary LagrangianEulerian (ALE) strategy. A pseudosolid formulation is used to manage the deformation of the fluid do main. The structure is described by the geometrically nonlinear thermoelastic dynamics. An efficient data transfer strategy based on the Gauss points is proposed to guarantee the equilibrium of the stresses and heat along the interface. The resulting strongly coupled set of nonlinear equations for the fluid, solution procedure. A numerical example efficiency of the methodology. structure, and heat is solved by a monolithic is presented to demonstrate the robustness and展开更多
Whether the particle will be trapped by the solid-liquid interface or not is dependent on its moving behavior ahead of the interface, so a mathematical model has been developed to investigate the movement of the parti...Whether the particle will be trapped by the solid-liquid interface or not is dependent on its moving behavior ahead of the interface, so a mathematical model has been developed to investigate the movement of the particle ahead of the solid-liquid interface. Based on the theory for the boundary layer, the fluid velocity field near the solid-liquid interface was obtained, and the trajectories of particles were calculated by the equations of motion for particles. In this model, the drag force, the added mass force, the buoyance force, the gravitational force, the Saffman force and the Basset history force are considered. The results show that the behavior of the particle ahead of the solid-liquid interface is affected by the physical property of the particle and fluid flow. And in the continuous casting process, if it moves in the stream directed upward or downward near vertical solid-liquid interface or in the horizontal flow under the solid-liquid interface, the particle with the diameter from 5 um to 60um can reach the solid-liquid interface. But if it moves in horizontal flow above the solid-liquid interface, only the particle with the diameter from 5 um to 10 um can reach the solid-liquid interface.展开更多
A simple,efficient and accurate high resolution method to tracking moving-interfaces-the characteristic integral-averaging finite volume method on unstructured meshes is proposed. And some numerical tests and evaluati...A simple,efficient and accurate high resolution method to tracking moving-interfaces-the characteristic integral-averaging finite volume method on unstructured meshes is proposed. And some numerical tests and evaluation of six main efficient methods for interface reconstruction are made. Through strict numerical simulation,their characters,advantages and shortcomings are compared,analyzed and commended in particular.展开更多
The shock tube experiments of inclined air/SF6 interface instability under the shock wave with the Mach numbers 1.23 and 1.41 are conducted. The numerical simulation is done with the parallel algorithm and the multi-v...The shock tube experiments of inclined air/SF6 interface instability under the shock wave with the Mach numbers 1.23 and 1.41 are conducted. The numerical simulation is done with the parallel algorithm and the multi-viscous-fluid and turbulence (MVFT) code of the large-eddy simulation (LES). The developing process of the interface accelerated by the shock wave is reproduced by the simulations. The complex wave structures, e.g., the propagation, refraction, and reflection of the shock wave, are clearly revealed in the flows. The simulated evolving images of the interface are consistent with the experimental ones. The simulated width of the turbulent mixing zone (TMZ) and the displacements of the bubble and the spike also agree well with the experimental data. Also, the reliability and effectiveness of the MVFT in simulating the problem of interface instability are validated. The more energies are injected into the TMZ when the shock wave has a larger Mach number. Therefore, the perturbed interface develops faster.展开更多
The dynamical behavior of fluids affected by the asymmetric gravity jitter oscillations, in particular, the effect of surface tension on partially-filled rotating fluids in a Dewar tank imposed by time-dependent direc...The dynamical behavior of fluids affected by the asymmetric gravity jitter oscillations, in particular, the effect of surface tension on partially-filled rotating fluids in a Dewar tank imposed by time-dependent directions of background reduced gravity accelerations is investigated. Results show that the greater the components of background reduced gravity in radial and circumferential directions, the greater will be the tendency toward increasing amplitude and degrees of asymmetry of the liquid-vapor interface profiles.展开更多
In the present research,two numerical schemes for improving the accuracy of the solution in the flow simulation of molten metal were applied.One method is the Piecewise Linear Interface Calculation(PLIC) method and th...In the present research,two numerical schemes for improving the accuracy of the solution in the flow simulation of molten metal were applied.One method is the Piecewise Linear Interface Calculation(PLIC) method and the other is the Donor-Acceptor(D-A) method.To verify the module of the interface reconstruction algorithms,simple problems were tested.After these validations,the accuracy and efficiency of these two methods were compared by simulating various real products.On the numerical simulation of free surface flow,it is possible for the PLIC method to track very accurately the interface between phases.The PLIC method,however,has the weak point in that a lot of computational time is required,though it shows the more accurate interface reconstruction.The Donor-Acceptor method has enough effectiveness in the macro-observation of a mold filling sequence though it shows inferior accuracy.Therefore,for the problems that need the accurate solution,PLIC is more appropriate than D-A.More accuracy may cause less efficiency in numerical analysis.Which method between D-A method and PLIC method should be chosen depends on the product.展开更多
Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics.In this study,the spreading and seepage processes of anhydrous ethan...Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics.In this study,the spreading and seepage processes of anhydrous ethanol in the interface between glass and rough PDMS are observed by a homemade optical in-situ tester.Digital image processing technology and numerical simulation software are adapted to identify and extract the topological properties of interface and thin fluid flow characteristics.Particular attention is paid to the dynamic evolution of the contact interface morphology under different stresses,the distribution of microchannels in the interface,the spreading characteristics of the fluid in contact interface,as well as the mechanical driving mechanism.Original surface morphology and the contact stress have a significant impact on the interface topography and the distribution of interfacial microchannels,which shows that the feature lengths of the microchannels,the spreading area and the spreading rate of the fluid are inversely proportional to the load.And the flow path of the fluid in the interface is mainly divided into three stages:along the wall of the island,generating liquid bridges,and moving from the tip side to the root side in the wedge-shaped channel.The main mechanical mechanism of liquid flow in the interface is the equilibrium between the capillary force that drives the liquid spreading and viscous resistance of solid wall to liquid.In addition,the phenomenon of“trapped air”occurs during the flow process due to the irregular characteristics of the microchannel.This study lays a certain theoretical foundation for the research of microscopic flow behavior of the liquid in the rough contact interface,the friction and lubrication of the mechanical system,and the sealing mechanism.展开更多
Purpose:To report a case of interface fluid syndrome following small incision lenticule extraction(SMILE)and subsequent CIRCLE enhancement.Case Presentation:A 30-year-old female experienced progressively worsening vis...Purpose:To report a case of interface fluid syndrome following small incision lenticule extraction(SMILE)and subsequent CIRCLE enhancement.Case Presentation:A 30-year-old female experienced progressively worsening vision following refractive enhancement surgery.The patient had experienced a transient increase in intraocular pressure(IOP)after SMILE,normalized post-steroid cessation.Three months after the enhancement,her best-corrected visual acuity deteriorated from 20/20 in both eyes before the surgery to 20/300.IOP measured by non-contact tonometry was 25.3 mmHg in the right eye and 26.7 mmHg in the left eye,while the measurements off the flap using iCare were 55.3 mmHg and 47.8 mmHg,respectively.Examination revealed moderate corneal edema,interface fluid pockets,and haze,which were confirmed by anterior segment optical coherence tomography.Treatment involved the discontinuation of steroids and the introduction of hypotensive medication,leading to significant symptom relief.Conclusion:This case highlights the importance of cautious and conservative steroid use,particularly in steroid-responsive patients.When steroids are administered in cases potentially involving diffuse lamellar keratitis and haze,monitoring peripheral IOP is essential.展开更多
The influence of melt superheating treatment on the solid/liquid (S/L) interface morphology of directionally solidified Ni-based superalloy DZ125 is investigated to elucidate the relationship between melt characteri...The influence of melt superheating treatment on the solid/liquid (S/L) interface morphology of directionally solidified Ni-based superalloy DZ125 is investigated to elucidate the relationship between melt characteristic and S/L interface stability. The results indicate that the interface morphology is not only related to the withdrawal velocity (R) but also to the melt superheating temperature (Ts) when the thermal gradient of solidification interface remains constant for different Ts with appropriate superheating treatment regulation. The interface morphology changes from cell to plane at R of 1.1 μm/s when Ts increases from 1500°C to 1650°C, and maintains plane with further elevated Ts of 1750°C. However, the interface morphology changes from coarse dendrite to cell and then to cellular dendrite at R of 2.25 μm/s when Ts increases from 1500°C to 1650°C and then to 1750°C. It is proved that the solidification onset temperature and the solidification interval undergo the nonlinear variation when Ts increases from 1500°C to 1680°C, and the turning point is 1650°C at which the solidification onset temperature and the solidification interval are all minimum. This indicates that the melt superheating treatment enhances the solidification interface stability and has important effect on the solidification characteristics.展开更多
Sealing is one of the most successful apphcatious of magnetic fluids. However, the sealing pressure difference is not satisfactory. This paper theoretically analyzes the mechanism of magnetic fluids sealing. Main fact...Sealing is one of the most successful apphcatious of magnetic fluids. However, the sealing pressure difference is not satisfactory. This paper theoretically analyzes the mechanism of magnetic fluids sealing. Main factors that have significant effects on the sealing ability include viscous stress on the interracial surface, magnetic surface tension, and the shape of the interracial surface. The sealing pressure with magnetic fluids decreases with increase of rotational speed. Experiments were carried out to study the stability of the interface between magnetic fluids and water. It has been shown that stability of the interface will be damaged by washing of water when the relative flow between water and magnetic fluid becomes turbulent.展开更多
This paper elaborates the chemical constituent change principles of deep geothermal fluid during the process of upward movement. It summarizes research methods of hydrochemistry, isotope and numerical modelling techni...This paper elaborates the chemical constituent change principles of deep geothermal fluid during the process of upward movement. It summarizes research methods of hydrochemistry, isotope and numerical modelling technique for the physiochemical processes such as decreasing temperature, shallow groundwater infusion, and degassing. The multi-component chemical geothermometry methods including gas geochemical method are discussed. High-temperature geothermal fields in China are mostly located in the southwest with frequent new tectonic movements, especially in Tibet high-temperature geothermal areas. Therefore the paper also focuses the status of high-temperature geothermal fluid research. At last, it's pointed out in the paper that in the future we can start from typical high-temperature geothermal zones and geothermal fields to explore optimization of the multi-component geothermometry method and use it in the reconstruction and analogue of the formation mechanism and internal relevancy of regional geothermal systems.展开更多
基金supported by the Ministry of Education of the Russian Federation(Project KPZU-2023-0002).
文摘The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem.We consider miscible(water and glycerol)and immiscible(water and high-viscosity silicone oil PMS-1000)fluids under subsonic oscillations perpendicular to the interface.Observations show that the interface shape depends on the amplitude and frequency of oscillations.The interface is undisturbed only in the absence of oscillations.Under small amplitudes,the interface between water and glycerol widens due to mixing.When the critical amplitude is reached,the interface becomes unstable to the fingering instability:Aqueous fingers penetrate the high-viscosity glycerol and induce intensive mixing of miscible fluids and associated decay of the instability.After the disappearance of the fingers,the interface takes a U-shape in the central part of the cell.A similar effect is observed for immiscible fluids:The oscillating interface tends to bend to the side of a high-viscosity fluid.Again,when the critical amplitude is reached,the fingering instability arises at the convex interface.This paper focuses on the causes of bending of the initially undisturbed interface between miscible or immiscible fluids.For this purpose,we measure the steady flow velocity near the interface and in the bulk of a high-viscosity fluid using Particle Image Velocimetry(PIV).
基金Supported by the National Natural Science Foundation of China(21878144,21576130,21490584 and 21838004)Project of Jiangsu Natural Science Foundation of China(BK20171464)+2 种基金Qing Lan ProjectJiangsu Overseas Visiting Scholar Program for University Prominent Young&Middle-aged Teachers and Presidentsthe Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘In modern chemical engineering processes, solid interface involvement is the most important component of process intensification techniques, such as nanoporous membrane separation and heterogeneous catalysis. The fundamental mechanism underlying interfacial transport remains incompletely understood given the complexity of heterogeneous interfacial molecular interactions and the high nonideality of the fluid involved. Thus, understanding the effects of interface-induced fluid microstructures on flow resistance is the first step in further understanding interfacial transport. Molecular simulation has become an indispensable method for the investigation of fluid microstructure and flow resistance. Here, we reviewed the recent research progress of our group and the latest relevant works to elucidate the contribution of interface-induced fluid microstructures to flow resistance.We specifically focused on water, ionic aqueous solutions, and alcohol–water mixtures given the ubiquity of these fluid systems in modern chemical engineering processes. We discussed the effects of the interfaceinduced hydrogen bond networks of water molecules, the ionic hydration of ionic aqueous solutions, and the spatial distributions of alcohol and alcohol–water mixtures on flow resistance on the basis of the distinctive characteristics of different fluid systems.
基金supported by the National Natural Science Foundation of China [21878144, 21729601, 21838004]the Foundation for Innovative Research Groups of the National Natural Science Foundation of China [21921006]+3 种基金Project of Jiangsu Natural Science Foundation of China [BK20171464]Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the Kempe Foundation in Swedengrant of Ministry of Research and Innovation, CNCS-UEFISCDI, Romania, project number PN-III-P4-ID-PCCF-2016-0050, within PNCDI III and the Swedish Science Council (VR)。
文摘In modern chemical engineering processes, the involvement of solid/fluid interface is the most important component of process intensification techniques, such as confined membrane separation and catalysis. In the review, we summarized the research progress of the latest theoretical and experimental works to elucidate the contribution of interface to the fluid properties and structures at nano-and micro-scale. We mainly focused on water, alcohol aqueous solution, and ionic liquids, because they are classical systems in interfacial science and/or widely involved in the industrialization process. Surface-induced fluids were observed in all reviewed systems and played a critical role in physicochemical properties and structures of outside fluid. It can even be regarded as a new interface, when the adsorption layer has a strong interaction with the solid surface. Finally, we proposed a perspective on scientific challenges in the modern chemical engineering processes and outlined future prospects.
基金financially supported by the Russian Science Foundation(Project 23-11-00242).
文摘The behavior of two immiscible low-viscosity liquids differing in density and viscosity in a vertical flat layer undergoing modulated rotation is experimentally studied.The layer has a circular axisymmetric boundary.In the absence of modulation of the rotation speed,the interphase boundary has the shape of a short axisymmetric cylinder.A new effect has been discovered,under the influence of rotation speed modulation,the interface takes on a new dynamic equilibrium state.A more viscous liquid covers the end boundaries of the layer in the form of thin films,which have the shape of round spots of almost constant radius;with increasing amplitude of the velocity modulation,the wetting boundary expands.It is found that upon reaching the critical amplitude of oscillations,the film of a viscous liquid loses stability,and the outer edge of the wetting spot collapses and takes on a feathery structure.It is shown that this threshold is caused by the development of the Kelvin-Helmholtz oscillatory instability of the film.The spreading radius of a spot of light viscous liquid and its stability are studied depending on the rotation rate,amplitude,and frequency of rotation speed modulation.The discovered averaged effects are determined by different oscillatory interaction of fluids with the end-walls of the cell,due to different viscosities.The effect of films forming can find application in technological processes to intensify mass transfer at interphase boundaries.
基金This research was financially supported by the National Natural Science Foundation of China(41572225)project of China Geological Survey(DD20189662,DD20211256).
文摘Seasonal frozen soil accounts for about 53.50%of the land area in China.Frozen soil is a complex multiphase system where ice,water,soil,and air coexist.The distribution and migration of salts in frozen soil during soil freezing are notably different from those in unfrozen soil areas.However,little knowledge is available about the process and mechanisms of salt migration in frozen soil.This study explores the mechanisms of salt migration at the ice-liquid interface during the freezing of pore fluids through batch experiments.The results are as follows.The solute concentrations of liquid and solid phases at the ice-liquid interface(C*_(L),C*_(S))gradually increased at the initial stage of freezing and remained approximately constant at the middle stage.As the ice-liquid interface advanced toward the system boundary,the diffusion of the liquid phase was blocked but the ice phase continued rejecting salts.As a result,C*_(L)and C*_(S)rapidly increased at the final stage of freezing.The distribution characteristics of solutes in ice and the liquid phases before C*_(L)and C*_(S)became steady were mainly affected by the freezing temperature,initial concentrations,and particle-size distribution of media(quartz sand and kaolin).In detail,the lower the freezing temperature and the better the particle-size distribution of media,the higher the solute proportion in the ice phase at the initial stage of freezing.Meanwhile,the increase in concentration first promoted but then inhibited the increase of solutes in the ice phase.These results have insights and scientific significance for the tackling of climate change,the environmental protection of groundwater and soil,and infrastructure protection such as roads,among other things.
基金supported by the National Natural Science Foundation of China(grant No.41572142)the National Science and Technology Major Project of China(grant No.2017ZX05009003-003)
文摘The hydraulic fracturing is still an effective technology for the exploitation of coalbed methane (CBM). However, after the hydraulic fracturing operation, the high water cut or sudden water flooding of CBM well usually occurs due to upward migration of bottom water, which is called water channeling (water inrush). This problem has been severely limiting the hydraulic fracturing effect of CBM wells. Some studies show that the aquifuge and cement paste themselves will not crush under hydraulic fracturing pressure. Water channeling often occurs at cement- aquifuge interface (CAI).
文摘Enhancement of two fluid mixing was numerically studied by tracking the multi fluid interfaces. Level set equations were used to capture the interfaces, and flow field was obtained by upwind TVD scheme to solve 2D Eulerian equations. The boundary conditions at interface of two fluids are determined by Ghost fluid method (GFM). The distributions of fluid parameters, such as pressure and density, were got at different time steps. The results show that the method presented in this paper can track the density discontinuity perfectly. Superior to previous results, the density discontinuity remains sharper. Also, the mixing of fluids can be greatly enhanced by setting disturbances along the initial fluid interfaces.
文摘Two interface capturing methods are studied for multi fluid flows, governed by the stiffened gas equation of state. The mixture type interface capturing algorithm uses a simple volume fraction model Euler equations written in a quasi conservative form, which is solved by a standard high resolution piecewise parabolic method (PPM) with multi fluid Riemann solver. The level set interface capturing method uses a narrow band ghost fluid method (GFM) with no numerical smearing. Several examples are presented and compared for one and two dimensions, which show the feasibility of the two methods applied to various multi fluid problems.
基金Project supported by the National Natural Science Foundation of China(Nos.11702029,11771054,U1730118,91852207,and 11801036)the China Postdoctoral Science Foundation(No.2016M600967)
文摘For solid-fluid interaction, one of the phase-density equations in diffuse interface models is degenerated to a "0 = 0" equation when the volume fraction of a certain phase takes the value of zero or unity. This is because the conservative variables in phasedensity equations include volume fractions. The degeneracy can be avoided by adding an artificial quantity of another material into the pure phase. However, nonphysical waves,such as shear waves in fluids, are introduced by the artificial treatment. In this paper,a transport diffuse interface model, which is able to treat zero/unity volume fractions, is presented for solid-fluid interaction. In the proposed model, a new formulation for phase densities is derived, which is unrelated to volume fractions. Consequently, the new model is able to handle zero/unity volume fractions, and nonphysical waves caused by artificial volume fractions are prevented. One-dimensional and two-dimensional numerical tests demonstrate that more accurate results can be obtained by the proposed model.
文摘This paper presents a monolithic approach to the thermal fluidstructure interaction (FSI) with nonconforming interfaces. The thermal viscous flow is governed by the Boussinesq approximation and the incompressible NavierStokes equations. The motion of the fluid domain is accounted for by an arbitrary LagrangianEulerian (ALE) strategy. A pseudosolid formulation is used to manage the deformation of the fluid do main. The structure is described by the geometrically nonlinear thermoelastic dynamics. An efficient data transfer strategy based on the Gauss points is proposed to guarantee the equilibrium of the stresses and heat along the interface. The resulting strongly coupled set of nonlinear equations for the fluid, solution procedure. A numerical example efficiency of the methodology. structure, and heat is solved by a monolithic is presented to demonstrate the robustness and
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59734080 and 59504006)the Project of National Fundamental Research and Development of China (Grant No. G1998061510) and High-Tech Research and Development Project
文摘Whether the particle will be trapped by the solid-liquid interface or not is dependent on its moving behavior ahead of the interface, so a mathematical model has been developed to investigate the movement of the particle ahead of the solid-liquid interface. Based on the theory for the boundary layer, the fluid velocity field near the solid-liquid interface was obtained, and the trajectories of particles were calculated by the equations of motion for particles. In this model, the drag force, the added mass force, the buoyance force, the gravitational force, the Saffman force and the Basset history force are considered. The results show that the behavior of the particle ahead of the solid-liquid interface is affected by the physical property of the particle and fluid flow. And in the continuous casting process, if it moves in the stream directed upward or downward near vertical solid-liquid interface or in the horizontal flow under the solid-liquid interface, the particle with the diameter from 5 um to 60um can reach the solid-liquid interface. But if it moves in horizontal flow above the solid-liquid interface, only the particle with the diameter from 5 um to 10 um can reach the solid-liquid interface.
文摘A simple,efficient and accurate high resolution method to tracking moving-interfaces-the characteristic integral-averaging finite volume method on unstructured meshes is proposed. And some numerical tests and evaluation of six main efficient methods for interface reconstruction are made. Through strict numerical simulation,their characters,advantages and shortcomings are compared,analyzed and commended in particular.
基金supported by the National Natural Science Foundation of China (Nos. 11072228 and 11002129)
文摘The shock tube experiments of inclined air/SF6 interface instability under the shock wave with the Mach numbers 1.23 and 1.41 are conducted. The numerical simulation is done with the parallel algorithm and the multi-viscous-fluid and turbulence (MVFT) code of the large-eddy simulation (LES). The developing process of the interface accelerated by the shock wave is reproduced by the simulations. The complex wave structures, e.g., the propagation, refraction, and reflection of the shock wave, are clearly revealed in the flows. The simulated evolving images of the interface are consistent with the experimental ones. The simulated width of the turbulent mixing zone (TMZ) and the displacements of the bubble and the spike also agree well with the experimental data. Also, the reliability and effectiveness of the MVFT in simulating the problem of interface instability are validated. The more energies are injected into the TMZ when the shock wave has a larger Mach number. Therefore, the perturbed interface develops faster.
文摘The dynamical behavior of fluids affected by the asymmetric gravity jitter oscillations, in particular, the effect of surface tension on partially-filled rotating fluids in a Dewar tank imposed by time-dependent directions of background reduced gravity accelerations is investigated. Results show that the greater the components of background reduced gravity in radial and circumferential directions, the greater will be the tendency toward increasing amplitude and degrees of asymmetry of the liquid-vapor interface profiles.
文摘In the present research,two numerical schemes for improving the accuracy of the solution in the flow simulation of molten metal were applied.One method is the Piecewise Linear Interface Calculation(PLIC) method and the other is the Donor-Acceptor(D-A) method.To verify the module of the interface reconstruction algorithms,simple problems were tested.After these validations,the accuracy and efficiency of these two methods were compared by simulating various real products.On the numerical simulation of free surface flow,it is possible for the PLIC method to track very accurately the interface between phases.The PLIC method,however,has the weak point in that a lot of computational time is required,though it shows the more accurate interface reconstruction.The Donor-Acceptor method has enough effectiveness in the macro-observation of a mold filling sequence though it shows inferior accuracy.Therefore,for the problems that need the accurate solution,PLIC is more appropriate than D-A.More accuracy may cause less efficiency in numerical analysis.Which method between D-A method and PLIC method should be chosen depends on the product.
基金supported by the National Natural Science Foundation of China(Nos.52375178,52305188,51975174,51875153,and 51805508)the Natural Science Foundation of Anhui Province(Nos.2308085ME158 and 2308085QE156).
文摘Understanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics.In this study,the spreading and seepage processes of anhydrous ethanol in the interface between glass and rough PDMS are observed by a homemade optical in-situ tester.Digital image processing technology and numerical simulation software are adapted to identify and extract the topological properties of interface and thin fluid flow characteristics.Particular attention is paid to the dynamic evolution of the contact interface morphology under different stresses,the distribution of microchannels in the interface,the spreading characteristics of the fluid in contact interface,as well as the mechanical driving mechanism.Original surface morphology and the contact stress have a significant impact on the interface topography and the distribution of interfacial microchannels,which shows that the feature lengths of the microchannels,the spreading area and the spreading rate of the fluid are inversely proportional to the load.And the flow path of the fluid in the interface is mainly divided into three stages:along the wall of the island,generating liquid bridges,and moving from the tip side to the root side in the wedge-shaped channel.The main mechanical mechanism of liquid flow in the interface is the equilibrium between the capillary force that drives the liquid spreading and viscous resistance of solid wall to liquid.In addition,the phenomenon of“trapped air”occurs during the flow process due to the irregular characteristics of the microchannel.This study lays a certain theoretical foundation for the research of microscopic flow behavior of the liquid in the rough contact interface,the friction and lubrication of the mechanical system,and the sealing mechanism.
基金supported by the National Natural Science Foundation of China General Program(82371021,82070922)The Guangdong Natural Science Foundation of General Program(2023A1515012336,2024A1515011384).
文摘Purpose:To report a case of interface fluid syndrome following small incision lenticule extraction(SMILE)and subsequent CIRCLE enhancement.Case Presentation:A 30-year-old female experienced progressively worsening vision following refractive enhancement surgery.The patient had experienced a transient increase in intraocular pressure(IOP)after SMILE,normalized post-steroid cessation.Three months after the enhancement,her best-corrected visual acuity deteriorated from 20/20 in both eyes before the surgery to 20/300.IOP measured by non-contact tonometry was 25.3 mmHg in the right eye and 26.7 mmHg in the left eye,while the measurements off the flap using iCare were 55.3 mmHg and 47.8 mmHg,respectively.Examination revealed moderate corneal edema,interface fluid pockets,and haze,which were confirmed by anterior segment optical coherence tomography.Treatment involved the discontinuation of steroids and the introduction of hypotensive medication,leading to significant symptom relief.Conclusion:This case highlights the importance of cautious and conservative steroid use,particularly in steroid-responsive patients.When steroids are administered in cases potentially involving diffuse lamellar keratitis and haze,monitoring peripheral IOP is essential.
基金supports from the National Natural Science Foundation of China (Grant No. 50931004)the National Basic Research Program of China (Grant Nos. 2011CB610406 and 2010CB631202)the National High Technology Research and Development Program (Grant No. 2007AA03Z552)
文摘The influence of melt superheating treatment on the solid/liquid (S/L) interface morphology of directionally solidified Ni-based superalloy DZ125 is investigated to elucidate the relationship between melt characteristic and S/L interface stability. The results indicate that the interface morphology is not only related to the withdrawal velocity (R) but also to the melt superheating temperature (Ts) when the thermal gradient of solidification interface remains constant for different Ts with appropriate superheating treatment regulation. The interface morphology changes from cell to plane at R of 1.1 μm/s when Ts increases from 1500°C to 1650°C, and maintains plane with further elevated Ts of 1750°C. However, the interface morphology changes from coarse dendrite to cell and then to cellular dendrite at R of 2.25 μm/s when Ts increases from 1500°C to 1650°C and then to 1750°C. It is proved that the solidification onset temperature and the solidification interval undergo the nonlinear variation when Ts increases from 1500°C to 1680°C, and the turning point is 1650°C at which the solidification onset temperature and the solidification interval are all minimum. This indicates that the melt superheating treatment enhances the solidification interface stability and has important effect on the solidification characteristics.
基金Project supported by National High-Technology Research and De-velopment Program of China (Grant No .2002AA323070)
文摘Sealing is one of the most successful apphcatious of magnetic fluids. However, the sealing pressure difference is not satisfactory. This paper theoretically analyzes the mechanism of magnetic fluids sealing. Main factors that have significant effects on the sealing ability include viscous stress on the interracial surface, magnetic surface tension, and the shape of the interracial surface. The sealing pressure with magnetic fluids decreases with increase of rotational speed. Experiments were carried out to study the stability of the interface between magnetic fluids and water. It has been shown that stability of the interface will be damaged by washing of water when the relative flow between water and magnetic fluid becomes turbulent.
基金supported by the Chinese Academy of Geological Sciences Fund (No.YK201611)the Chinese Academy of Geological Sciences Hydrogeological Environment Geology Institute Fund (No. SK201408)
文摘This paper elaborates the chemical constituent change principles of deep geothermal fluid during the process of upward movement. It summarizes research methods of hydrochemistry, isotope and numerical modelling technique for the physiochemical processes such as decreasing temperature, shallow groundwater infusion, and degassing. The multi-component chemical geothermometry methods including gas geochemical method are discussed. High-temperature geothermal fields in China are mostly located in the southwest with frequent new tectonic movements, especially in Tibet high-temperature geothermal areas. Therefore the paper also focuses the status of high-temperature geothermal fluid research. At last, it's pointed out in the paper that in the future we can start from typical high-temperature geothermal zones and geothermal fields to explore optimization of the multi-component geothermometry method and use it in the reconstruction and analogue of the formation mechanism and internal relevancy of regional geothermal systems.