期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
Effects of CH_(4)/CO_(2) multi-component gas on components and properties of tight oil during CO_(2) utilization and storage: Physical experiment and composition numerical simulation
1
作者 Zhi-Hao Jia Ren-Yi Cao +5 位作者 Bin-Yu Wang Lin-Song Cheng Jin-Chong Zhou Bao-Biao Pu Fu-Guo Yin Ming Ma 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3478-3487,共10页
An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effe... An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff. 展开更多
关键词 multi-component gas Properties and components Core displacement experiment Nano-confinement numerical simulation CO_(2)utilization and storage
下载PDF
Fretting Wear Behavior of Medium Carbon Steel Modified by Low Temperature Gas Multi-component Thermo-chemical Treatment 被引量:3
2
作者 LUO Jun ZHENG Jianfeng PENG Jinfang HE Liping ZHU Minhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期288-296,共9页
The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, ... The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear. 展开更多
关键词 fretting wear fretting regimes low temperature gas multi-component thermo-chemical treatment(LTGMTT) modified layer medium carbon steel
下载PDF
Enhanced gas separation performance of mixed matrix hollow fiber membranes containing post-functionalized S-MIL-53 被引量:6
3
作者 Haitao Zhu Xingming Jie +3 位作者 Lina Wang Guodong Kang Dandan Liu Yiming Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期781-790,共10页
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ... Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization. 展开更多
关键词 Post-functionalized S-MIL-53 mixed matrix hollow fiber membranes CO2 permeance Plasticization gas separation
下载PDF
Predicting gas-bearing distribution using DNN based on multi-component seismic data: Quality evaluation using structural and fracture factors 被引量:1
4
作者 Kai Zhang Nian-Tian Lin +3 位作者 Jiu-Qiang Yang Zhi-Wei Jin Gui-Hua Li Ren-Wei Ding 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1566-1581,共16页
The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata ... The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata in tight sandstone. First, multi-component composite seismic attributes are obtained.The strong nonlinear relationships between multi-component composite attributes and gas-bearing reservoirs can be constrained through a DNN. Therefore, we identify and predict the gas-bearing strata using a DNN. Then, sample data are fed into the DNN for training and testing. After optimized network parameters are determined by the performance curves and empirical formulas, the best deep learning gas-bearing prediction model is determined. The composite seismic attributes can then be fed into the model to extrapolate the hydrocarbon-bearing characteristics from known drilling areas to the entire region for predicting the gas reservoir distribution. Finally, we assess the proposed method in terms of the structure and fracture characteristics and predict favorable exploration areas for identifying gas reservoirs. 展开更多
关键词 multi-component seismic exploration Tight sandstone gas reservoir prediction Deep neural network(DNN) Reservoir quality evaluation Fracture prediction Structural characteristics
下载PDF
Synergistic Effect in Mixed Capillary Gas Chromatographic Stationap Phases Containing Heptakis(2,3,6-tri-o-pentyl)-β-cyclodextrin and Dibenzo-18-crown-6 被引量:1
5
作者 Li Ming YUAN Ruo Nong FU +3 位作者 Xue Xian CHEN Shi Hong GUl Rong Ji DAI (Chemistry Department of Yunnan Normal University.Kunming 650092)(Department of Chemical Engineering.Beijing institute of Technology,BEijing 100081)(Solar Energy Research Institute ofyunna 《Chinese Chemical Letters》 SCIE CAS CSCD 1999年第3期223-226,共4页
used-silical capillary columns containing heptakis(2、3、6-tri-o-pentyl)-β-cyclodextrinand dibenzo-18-crown-6 were prepared.By studying the selectivity of mixed stationary phases forsome solute pairs.as well a... used-silical capillary columns containing heptakis(2、3、6-tri-o-pentyl)-β-cyclodextrinand dibenzo-18-crown-6 were prepared.By studying the selectivity of mixed stationary phases forsome solute pairs.as well as comparing with the heptakis(2.3、6-tri-O-pentyl)-β-cyclodextrin and thedibenzo-18-crown-6 used as individual stationary phase、the synergistic effects were observed.These effects were affected by the column temperature.mixed ratio and linear velocity of carrier gas. 展开更多
关键词 gas chromatography mixed stationary phase synergistic effect heptakis(2.3.6-tri-o-pentyl)-β-cyclodextrin DIBENZO-18-CROWN-6
下载PDF
Design and analysis of dual mixed refrigerant processes for high-ethane content natural gas liquefaction
6
作者 Ting He Wensheng Lin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期354-364,共11页
Recovery and purification of ethane has a significant impact on economic benefit improvement of the high-ethane content natural gas.However,current LNG-NGL integrated processes mainly focus on conventional natural gas... Recovery and purification of ethane has a significant impact on economic benefit improvement of the high-ethane content natural gas.However,current LNG-NGL integrated processes mainly focus on conventional natural gas,which are not applicable to natural gas with high ethane content.To fill this gap,three dual mixed refrigerant processes are proposed for simulation study of high-ethane content natural gas liquefaction.The proposed processes are optimized by a combination method of sequence optimization and genetic algorithm.Comparatively analysis is conducted to evaluate the three processes from the energetic and exergetic points of view.The results show that the power consumption of Process 3 which compressing natural gas after distillation is the lowest.For safety or other considerations,some common compositions of the mixed refrigerant may need to be removed under certain circumstances.Considering this,case studies of mixed refrigerant involving six composition combinations are carried out to investigate the effects of refrigerant selection on the process performance. 展开更多
关键词 Natural gas liquefaction ETHANE Dual mixed refrigerant cycle Cryogenic distillation Refrigerant selection
下载PDF
Synergistic Effect in Special Selectivity Mixed Gas Chromatographic Stationary Phase in the Separation of Aromatic Compounds
7
作者 Yuan, LM Fu, RN +2 位作者 Gui, SH Chen, XX Dai, RJ 《Chinese Chemical Letters》 SCIE CAS CSCD 1998年第2期151-155,共5页
The gas chromatographic separations of aromatic compounds using special mixed stationary phases consisting of pp-beta-CD+AgNO3, pp-beta-CD+TINO3, pp-beta-CD+di-n-butly phthalate, pp-beta-CD+BPBHpB liquid crystalline, ... The gas chromatographic separations of aromatic compounds using special mixed stationary phases consisting of pp-beta-CD+AgNO3, pp-beta-CD+TINO3, pp-beta-CD+di-n-butly phthalate, pp-beta-CD+BPBHpB liquid crystalline, and bentone-34+AgNO3 were investigated. Besides pp-beta-CD+di-n-butyl phthalate, most of the separations deviated from the additivity and a synergistic effect was observed. The separation effects depend on the temperature and how mixing is accomplished. 展开更多
关键词 gas chromatography mixed stationary phase synergistic effect aromatic compounds
全文增补中
Assembling ionic liquid into porous molecular filler of mixed matrix membrane to trigger high gas permeability,selectivity,and stability for CO_(2)/CH_(4) separation
8
作者 Liting Yu Liqin Hao +8 位作者 Yang Feng Jia Pang Mengwei Guo Liangjun Li Weidong Fan Lili Fan Rongming Wang Zixi Kang Daofeng Sun 《Nano Research》 SCIE EI CSCD 2024年第5期4535-4543,共9页
As an emerging zero-dimensional nano crystalline porous material,porous organic cages(POCs)with soluble properties in organic solvents,are promising candidates as molecular fillers in mixed matrix membranes(MMMs).The ... As an emerging zero-dimensional nano crystalline porous material,porous organic cages(POCs)with soluble properties in organic solvents,are promising candidates as molecular fillers in mixed matrix membranes(MMMs).The pore structure of POCs should be adjusted to trigger efficient gas separation performance,and the interaction between filler and matrix should be optimized.In this work,ionic liquid(IL)was introduced into the molecular fillers of CC3,to construct the IL@CC3/PIM-1 membrane to effectively separate CO_(2) from CH_(4).The advantages of doping IL include:(1)narrowing the cavity size of POCs from 4.4 to 3.9Åto enhance the diffusion selectivity,(2)strengthening the CO_(2) solubility to heighten the gas permeability,and(3)improving the compatibility between filler and matrix to upgrade membrane stability.After the optimization of the membrane composite,the IL@CC3/PIM-1-10%membrane possesses the CO_(2) permeability of 7868 Barrer and the CO_(2)/CH_(4) selectivity of 73.4,which compared to the CC3/PIM-1-10%membrane,improved by 15.9%and 106.2%,respectively.Furthermore,the membrane has maintained a stable separation performance at varied temperatures and pressures during the long-term test.The proposed method offers an efficient way to improve the performance of POCs-based MMMs in gas separation. 展开更多
关键词 porous organic cage mixed matrix membrane ionic liquid gas separation
原文传递
The numerical simulation of a new double swirl static mixer for gas reactants mixing 被引量:4
9
作者 Zhuokai Zhuang Jingtian Yan +3 位作者 Chenglang Sun Haiqiang Wang Yuejun Wang Zhongbiao Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第9期2438-2446,共9页
For the nitrogen oxide removal processes,high performance gas mixer is deeply needed for the injection of NH3 or O3.In this study,a new type of double swirl static mixer in gas mixing was investigated using computatio... For the nitrogen oxide removal processes,high performance gas mixer is deeply needed for the injection of NH3 or O3.In this study,a new type of double swirl static mixer in gas mixing was investigated using computational fluid dynamics(CFD).The results obtained using Particle Image Velocimetry(PIV)correlated well with the results obtained from simulation.The comparisons in pressure loss between the experimental results and the simulation results showed that the model was suitable and accurate for the simulation of the static mixer.Optimal process conditions and design were investigated.When L/D equaled 4,coefficient of variation(COV)was<5%.The inlet velocity did not affect the distributions of turbulent kinetic energy.In terms of both COV and pressure loss,the inner connector is important in the design of the static mixer.The nozzle length should be set at 4 cm.Taking both COV and pressure loss into consideration,the optimal oblique degree is 450.The averaged kinetic energy changed according to process conditions and design.The new static mixer resulted in improved mixing performance in a more compact design.The new static mixer is more energy efficient compared with other SV static mixers.Therefore,the double swirl static mixer is promising in gas mixing. 展开更多
关键词 CFD PIV gas mixing Double swirl static mixer Pressure loss
下载PDF
Numerical Simulation and Analysis of Migration Law of Gas Mixture Using Carbon Dioxide as Cushion Gas in Underground Gas Storage Reservoir 被引量:1
10
作者 Chuan-Kai Niu Yu-Fei Tan 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第3期121-128,共8页
One of the major technical challenges in using carbon dioxide( CO2) as part of the cushion gas of the underground gas storage reservoir( UGSR) is the mixture of CO2and natural gas. To decrease the mixing extent and ma... One of the major technical challenges in using carbon dioxide( CO2) as part of the cushion gas of the underground gas storage reservoir( UGSR) is the mixture of CO2and natural gas. To decrease the mixing extent and manage the migration of the mixed zone,an understanding of the mechanism of CO2and natural gas mixing and the diffusion of the mixed gas in aquifer is necessary. In this paper,a numerical model based on the three dimensional gas-water two-phase flow theory and gas diffusion theory is developed to understand this mechanism. This model is validated by the actual operational data in Dazhangtuo UGSR in Tianjin City,China.Using the validated model,the mixed characteristic of CO2and natural gas and the migration mechanism of the mixed zone in an underground porous reservoir is further studied. Particularly,the impacts of the following factors on the migration mechanism are studied: the ratio of CO2injection,the reservoir porosity and the initial operating pressure. Based on the results,the optimal CO2injection ratio and an optimal control strategy to manage the migration of the mixed zone are obtained. These results provide technical guides for using CO2as cushion gas for UGSR in real projects. 展开更多
关键词 underground gas storage reservoir(UGSR) cushion gas carbon dioxide mixed zone porous media
下载PDF
Effect of gas blowing nozzle angle on multiphase flow and mass transfer during RH refining process 被引量:1
11
作者 Jiahao Wang Peiyuan Ni +2 位作者 Chao Chen Mikael Ersson Ying Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期844-856,共13页
A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a... A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up,and measurements were carried out to validate the mathematical model.The results show that,with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min^(-1),the mixing time predicted by the mathematical model agrees well with the measured values.The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations,where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value.In addition,the circulation flow rate was 9 kg·s^(-1).When the gas blowing nozzle was horizontally rotated by either 30° or 45°,the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle,due to the rotational flow formed in the up-snorkel.Furthermore,the mixing time at the monitoring point 1,2,and 3 was shortened by around 21.3%,28.2%,and 12.3%,respectively.With the nozzle angle of 30° and 45°,the averaged residence time of 128 bubbles in liquid was increased by around 33.3%. 展开更多
关键词 Ruhrstahl-Heraeus refining gas blowing nozzle angle circulation flow rate mixing time multiphase flow
下载PDF
Effect of Welding Parameters on GTA Weld Shape for Pure Iron Plate under Ar-O_2 Mixed Shielding
12
作者 ShanDing LU H.Fujii K.Nogi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第3期359-366,共8页
Weld shape variation for different welding parameters is investigated on pure iron plate under gas tungsten arc (GTA) welding with argon-oxygen mixed shielding. Results showed that small addition of oxygen to the ar... Weld shape variation for different welding parameters is investigated on pure iron plate under gas tungsten arc (GTA) welding with argon-oxygen mixed shielding. Results showed that small addition of oxygen to the argon base shielding gas can effectively adjust the oxygen adsorption to the molten pool. An inward Marangoni convection occurs on the pool surface when the oxygen content in the weld pool is over the critical value, 80×10^-6, for pure iron plate under Ar-0.3%O2 mixed shielding. Low oxygen content in the weld pool changes the inward Marangoni to an outward direction under the Ar-0.1%O2 shielding. The GTA weld shape depends to a large extent on the pattern and strength of the Marangoni convection on the pool surface, which is determined by the content of surface active element, oxygen, in the weld pool and the welding parameters. The strength of the Marangoni convection on the liquid pool is a product of the temperature coefficient of the surface tension (dσ/dT) and the temperature gradient (dT/dr) on the pool surface. Different welding parameters will change the temperature distribution and gradient on the pool surface, and therefore, affect the strength of Marangoni convection and the weld shape. 展开更多
关键词 Weld shape OXYGEN Marangoni convection mixed shielding gas
下载PDF
New insight into prediction of phase behavior of natural gas hydrate by different cubic equations of state coupled with various mixing rules
13
作者 Amir Hossein Saeedi Dehaghani 《Petroleum Science》 SCIE CAS CSCD 2017年第4期780-790,共11页
Progress in hydrate thermodynamic study necessitates robust and fast models to be incorporated in reservoir simulation softwares. However, numerous models presented in the literature makes selection of the best,proper... Progress in hydrate thermodynamic study necessitates robust and fast models to be incorporated in reservoir simulation softwares. However, numerous models presented in the literature makes selection of the best,proper predictive model a cumbersome task. It is of industrial interest to make use of cubic equations of state(EOS) for modeling hydrate equilibria. In this regard, this study focuses on evaluation of three common EOSs including Peng–Robinson, Soave–Redlich–Kwong and Valderrama–Patel–Teja coupled with van der Waals and Platteeuw theory to predict hydrate P–T equilibrium of a real natural gas sample. Each EOS was accompanied with three mixing rules, including van der Waals(vd W),Avlonitis non-density dependent(ANDD) and general nonquadratic(GNQ). The prediction of cubic EOSs was in sufficient agreement with experimental data and with overall AARD% of less than unity. In addition, PR plus ANDD proved to be the most accurate model in this study for prediction of hydrate equilibria with AARD% of 0.166.It was observed that the accuracy of cubic EOSs studied in this paper depends on mixing rule coupled with them,especially at high-pressure conditions. Lastly, the present study does not include any adjustable parameter to be correlated with hydrate phase equilibrium data. 展开更多
关键词 gas Hydrate Cubic equation of state mixing rule Thermodynamic modeling
下载PDF
Forecast of natural gas supply and demand in China under the background of “Dual Carbon Targets” 被引量:1
14
作者 JIA Ailin CHENG Gang +1 位作者 CHEN Weiyan LI Yilong 《Petroleum Exploration and Development》 SCIE 2023年第2期492-504,共13页
As a kind of clean energy which creates little carbon dioxide, natural gas will play a key role in the process of achieving “Peak Carbon Dioxide Emission” and “Carbon Neutrality”. The Long-range Energy Alternative... As a kind of clean energy which creates little carbon dioxide, natural gas will play a key role in the process of achieving “Peak Carbon Dioxide Emission” and “Carbon Neutrality”. The Long-range Energy Alternatives Planning System(LEAP) model was improved by using new parameters including comprehensive energy efficiency and terminal effective energy consumption. The Back Propagation(BP) Neural Network–LEAP model was proposed to predict key data such as total primary energy consumption, energy mix, carbon emissions from energy consumption, and natural gas consumption in China. Moreover, natural gas production in China was forecasted by the production composition method. Finally, based on the forecast results of natural gas supply and demand, suggestions were put forward on the development of China’s natural gas industry under the background of “Dual Carbon Targets”. The research results indicate that under the background of carbon peak and carbon neutrality, China’s primary energy consumption will peak(59.4×10^(8)tce) around 2035, carbon emissions from energy consumption will peak(103.4×10^(8)t) by 2025, and natural gas consumption will peak(6100×10^(8)m^(3)) around 2040, of which the largest increase will be contributed by the power sector and industrial sector. China’s peak natural gas production is about(2800–3400)×10^(8)m^(3), including(2100–2300)×10^(8)m^(3)conventional gas(including tight gas),(600–1050)×10^(8)m^(3)shale gas, and(150–220)×10^(8)m^(3)coalbed methane. Under the background of carbon peak and carbon neutrality, the natural gas consumption and production of China will further increase, showing a great potential of the natural gas industry. 展开更多
关键词 carbon peak and carbon neutrality energy mix carbon emissions natural gas consumption natural gas produc-tion new energy system terminal consumption scale production supply storage and marketing
下载PDF
Multichannel Discharge Characteristics of Gas Switch Gap in SF_6-N_2 or SF_6-Ar Gas Mixtures Under Nanosecond Triggering Pulses
15
作者 常家森 王虎 +1 位作者 张乔根 邱爱慈 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第6期719-723,共5页
Experiments were carried out to ascertain multichannel discharge characteristics in a self-designed coaxial field-distortion gas switch filled with SFa-N2 or SF6-Ar gas mixtures of different mixing ratios. In these ex... Experiments were carried out to ascertain multichannel discharge characteristics in a self-designed coaxial field-distortion gas switch filled with SFa-N2 or SF6-Ar gas mixtures of different mixing ratios. In these experiments, the pressure varied from 0.1 MPa to 0.2 MPa, the voltage pulse peak applied to the switch was in the range from 40 kV to 78 kV, and the pulse rise time was 11 ns. The static breakdown strength of the gas switch gap in the switch was also measured. The results show that in general the average number of discharge channels for SF6-Ar or SF6-N2 gas mixture which contains less SFa is larger than that for gas mixture which contains more SF6, however, the average number of channels almost keeps constant as the gas mixing ratio varies when the pulse rise rate is high enough. The static breakdown strength of the gas switch gap decreases slightly as the content of argon or nitrogen increases. 展开更多
关键词 multichannel discharge gas dielectric strength SFB-N2 SF6-Ar mixing ratio
下载PDF
THE MIXING OF GAS-LIQUID FLOW WITH VAPOR AND GAS-SOLID FLOW
16
作者 林多敏 蔡树棠 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第6期513-518,共6页
In the industrial production, the mixing of gas-liquid flow with vapor and gas-solid flow is a very common problem. In the process of the mixing, solid particle-clusters will form, and will have steady radii when the ... In the industrial production, the mixing of gas-liquid flow with vapor and gas-solid flow is a very common problem. In the process of the mixing, solid particle-clusters will form, and will have steady radii when the effect of the gathering of particles is balanced withthat of the breaking of particle-clusters. Then, the population distribution function of size of particles per unit length per unit volume is introduced, and its governingequation is derived on the analogy of the molecular kinetic theory. Finally, when the gas flow is very slow, the expression of steady average radius of particle-clusters is obtained. 展开更多
关键词 THE mixING OF gas-LIQUID FLOW WITH VAPOR AND gas-SOLID FLOW gas
下载PDF
Gas storage in shale pore system:A review of the mechanism,control and assessment
17
作者 Yue Feng Xian-Ming Xiao +3 位作者 En-Ze Wang Ping Gao Chen-Gang Lu Gang Li 《Petroleum Science》 SCIE EI CSCD 2023年第5期2605-2636,共32页
In the past 15 years,the shale gas revolution and large-scale commercial developments in the United States have driven the exploration and development of shale plays worldwide.Among many factors affecting shale gas ex... In the past 15 years,the shale gas revolution and large-scale commercial developments in the United States have driven the exploration and development of shale plays worldwide.Among many factors affecting shale gas exploration potential,the gas-bearing properties of shale(quantity,storage state,composition)and their controlling factors are the essential research attracting wide attention in the academic community.This paper reviews the research progress on the retention mechanism,influencing factors,and evaluation methods for resource potential of the shale gas system,and proposes further research directions.Sorption is the main mechanism of gas retention in organic-rich shales;the gas is mainly stored in nanopores of shale in free and sorption states.The presence of water and nonhydrocarbon gases in pores can complicate the process and mechanism of methane(CH4)sorption,and the related theoretical models still need further development.The in-situ gas content and gasbearing properties of shale are governed by the geological properties(organic matter abundance,kerogen type,thermal maturity,mineral composition,diagenesis),the properties of fluids in pores(water,CH_(4),non-hydrocarbon gases),and geological conditions(temperature,pressure,preservation conditions)of the shale itself.For a particular basin or block,it is still challenging to define the main controlling factors,screen favorable exploration areas,and locate sweet spots.Compared to marine shales with extensive research and exploration data,lacustrine and marine-continental transitional shales are a further expanding area of investigation.Various methods have been developed to quantitatively characterize the in-situ gas content of shales,but all these methods have their own limitations,and more in-depth studies are needed to accurately evaluate and predict the in-situ gas content of shales,especially shales at deep depth. 展开更多
关键词 Shale gas Retention mechanism multi-component adsorption Influencing factors Evaluation method
下载PDF
Changes in China--Beijing is seeking less energy-intensive economic growth & a less carbon-intensive energy mix and its impact over oil & gas supply
18
作者 Wang Yilin 《China Oil & Gas》 CAS 2016年第3期3-4,共2页
Having experienced over 30 years of rapid growth,China’s economic development is entering a new normal featured by an ever optimizing economic structure shifting from high-speed to medium-high speed growth,and from f... Having experienced over 30 years of rapid growth,China’s economic development is entering a new normal featured by an ever optimizing economic structure shifting from high-speed to medium-high speed growth,and from factor-driven to innovation-driven pattern.In adapting 展开更多
关键词 Beijing is seeking less energy-intensive economic growth Changes in China a less carbon-intensive energy mix and its impact over oil gas supply OVER
下载PDF
Coexistence of natural gas hydrate,free gas and water in the gas hydrate system in the Shenhu Area,South China Sea 被引量:26
19
作者 Xu-wen Qin Jing-an Lu +6 位作者 Hai-long Lu Hai-jun Qiu Jin-qiang Liang Dong-ju Kang Lin-sen Zhan Hong-feng Lu Zeng-gui Kuang 《China Geology》 2020年第2期210-220,共11页
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide cover... Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide coverage of the three-dimensional seismic survey,a large number of boreholes,and detailed data of the seismic survey,logging,and core analysis.In the beginning of 2020,China has successfully conducted the second offshore production test of gas hydrates in this area.In this paper,studies were made on the structure of the hydrate system for the production test,based on detailed logging data and core analysis of this area.As to the results of nuclear magnetic resonance(NMR)logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition,the hydrate system on which the production well located can be divided into three layers:(1)207.8–253.4 mbsf,45.6 m thick,gas hydrate layer,with gas hydrate saturation of 0–54.5%(31%av.);(2)253.4–278 mbsf,24.6 m thick,mixing layer consisting of gas hydrates,free gas,and water,with gas hydrate saturation of 0–22%(10%av.)and free gas saturation of 0–32%(13%av.);(3)278–297 mbsf,19 m thick,with free gas saturation of less than 7%.Moreover,the pore water freshening identified in the sediment cores,taken from the depth below the theoretically calculated base of methane hydrate stability zone,indicates the occurrence of gas hydrate.All these data reveal that gas hydrates,free gas,and water coexist in the mixing layer from different aspects. 展开更多
关键词 mixing layer gas hydrate NMR logging Sonic logging Core analysis Oil gas exploration engineering Shenhu Area South China Sea China
下载PDF
Effect of Mg/Al atom ratio of support on catalytic performance of Co-Mo/MgO-Al_2O_3 catalyst for water gas shift reaction 被引量:6
20
作者 Yixin Lian Huifang Wang Quanxing Zheng Weiping Fang Yiquan Yang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第2期161-166,共6页
Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo spe... Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo^5+, Mo^4+, S^2- and S^2-2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475-0.525 exhibited optimal catalytic activity for the reaction. 展开更多
关键词 Co-Mo catalyst reduction SULFIDATION mixed support water gas shift
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部