A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Expe...A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic.展开更多
The catalytic effects of single and mixed catalysts, i.e. single 3%Ca and 5%Na-BL(black liquor) catalysts and mixed 3%Ca+5%Na-BL catalyst, on carbon conversion, gasification reaction rate constant and activation en...The catalytic effects of single and mixed catalysts, i.e. single 3%Ca and 5%Na-BL(black liquor) catalysts and mixed 3%Ca+5%Na-BL catalyst, on carbon conversion, gasification reaction rate constant and activation energy, relative amount of harmful pollutant like sulphur containing gases have been investigated by thermogravimetry in steam gasification under temperature 750℃ to 950℃ at ambient pressure for three high-metarnorphous anthracites (Longyan, Fenghai and Youxia coals in Fujian Province). The mixed catalyst of 3%Ca+5%Na-BL increases greatly the carbon conversion and gasification rate constant by accelerating the gasification reaction C+H2O→CO+H2 due to presence of alkali surfacecompounds [COM], [CO2M] and exchanged calcium phenolate and calcium carboxylate (-COO)2. By adding CaCO3 into BL catalyst in gasification, in addition to improving the catalyst function and enhancing the carbon conversion, the effective desulphurization is also achieved, but the better operating temperature should be below 900℃. The homogenous and shrinking core models can be successfully employed to correlate the relations between the conversion and the gasification .time .and to estimate the reaction rate constant, The reaction acUvaUon energy and pre-exponential factor are estimated and the activation energy for mixed catalyst is in a range of 98.72-166.92 kJ·mol^-1, much less than 177.50-196.46 kJ·mol^-1 for non-catalytic steam gasification for three experimental coals.展开更多
The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, ...The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear.展开更多
The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata ...The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata in tight sandstone. First, multi-component composite seismic attributes are obtained.The strong nonlinear relationships between multi-component composite attributes and gas-bearing reservoirs can be constrained through a DNN. Therefore, we identify and predict the gas-bearing strata using a DNN. Then, sample data are fed into the DNN for training and testing. After optimized network parameters are determined by the performance curves and empirical formulas, the best deep learning gas-bearing prediction model is determined. The composite seismic attributes can then be fed into the model to extrapolate the hydrocarbon-bearing characteristics from known drilling areas to the entire region for predicting the gas reservoir distribution. Finally, we assess the proposed method in terms of the structure and fracture characteristics and predict favorable exploration areas for identifying gas reservoirs.展开更多
An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental anal...An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental analysis of the mixed gas transport character. This model is tested using the binary and ternary mixed gas with various compositions through the PDMS membranes, and the predicted data of the permeation flux and the compositions of the permeated gas are in good agreement with the experimental ones, which indicates that the op-erational model is applicable for the evaluation of the permeation performance of mixed gas through PDMS mem-branes.展开更多
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ...Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.展开更多
used-silical capillary columns containing heptakis(2、3、6-tri-o-pentyl)-β-cyclodextrinand dibenzo-18-crown-6 were prepared.By studying the selectivity of mixed stationary phases forsome solute pairs.as well a...used-silical capillary columns containing heptakis(2、3、6-tri-o-pentyl)-β-cyclodextrinand dibenzo-18-crown-6 were prepared.By studying the selectivity of mixed stationary phases forsome solute pairs.as well as comparing with the heptakis(2.3、6-tri-O-pentyl)-β-cyclodextrin and thedibenzo-18-crown-6 used as individual stationary phase、the synergistic effects were observed.These effects were affected by the column temperature.mixed ratio and linear velocity of carrier gas.展开更多
Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based n...Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based nanoparticles were homogenously integrated within the polymer matrix,facilitating penetration of CO_2 through the membrane while acting as barrier for methane gas.The membrane containing 4.6 wt% fumed silica(FS)(PEBAX/4.6 wt%FS)exhibits astonishing selectivity results where binary gas mixture of CO_2/CH_4 was used as feed gas.As detected by gas chromatography,in the permeate side,data showed a significant increase of CO_2 permeance,while CH_4 transport through the mixed matrix membrane was not detectable.Moreover,PEBAX/4.6 wt%FS greatly exceeds the Robeson limit.According to data reported on CO_2/CH_4 gas pair separation in the literature,the results achieved in this work are beyond those data reported in the literature,particularly when PEBAX/4.6 wt%FS membrane was utilized.展开更多
Multi-component seismic exploration is an important technique in the utilization of P-waves and converted S-waves for oil and gas exploration.It has unique advantages in the structural imaging of gas zones,reservoir p...Multi-component seismic exploration is an important technique in the utilization of P-waves and converted S-waves for oil and gas exploration.It has unique advantages in the structural imaging of gas zones,reservoir prediction,lithology,and gas-water identifi cation,and the development direction and degree of fractures.Multi-component joint inversion is one of the most important steps in multi-component exploration.In this paper,starting from the basic principle of multi-component joint inversion,the diff erences between the method and single P-wave inversion are introduced.Next,the technique is applied to the PLN area of the Sichuan Basin,and the P-wave impedance,S-wave impedance,and density are obtained based on multi-component joint inversion.Through the velocity and lithology,porosity,and gas saturation fi tting formulas,prediction results are calculated,and the results are analyzed.Finally,multi-component joint inversion and single P-wave inversion are compared in eff ective reservoir prediction.The results show that multi-component joint inversion increases the constraints on the inversion conditions,reduces the multi-solution of a single P-wave inversion,and is more objective and reliable for the identification of reservoirs,effectively improving the accuracy of oil and gas reservoir prediction and development.展开更多
An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effe...An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.展开更多
Recovery and purification of ethane has a significant impact on economic benefit improvement of the high-ethane content natural gas.However,current LNG-NGL integrated processes mainly focus on conventional natural gas...Recovery and purification of ethane has a significant impact on economic benefit improvement of the high-ethane content natural gas.However,current LNG-NGL integrated processes mainly focus on conventional natural gas,which are not applicable to natural gas with high ethane content.To fill this gap,three dual mixed refrigerant processes are proposed for simulation study of high-ethane content natural gas liquefaction.The proposed processes are optimized by a combination method of sequence optimization and genetic algorithm.Comparatively analysis is conducted to evaluate the three processes from the energetic and exergetic points of view.The results show that the power consumption of Process 3 which compressing natural gas after distillation is the lowest.For safety or other considerations,some common compositions of the mixed refrigerant may need to be removed under certain circumstances.Considering this,case studies of mixed refrigerant involving six composition combinations are carried out to investigate the effects of refrigerant selection on the process performance.展开更多
Based on the single coal adsorption gas, hard coal and soft coal of intake airway in Shanxi Heshun Tianchi Coal Mine were chosen to simulate the soft coal seams in coalbed as those in different qualities are mixed wit...Based on the single coal adsorption gas, hard coal and soft coal of intake airway in Shanxi Heshun Tianchi Coal Mine were chosen to simulate the soft coal seams in coalbed as those in different qualities are mixed with delamination. Experiments on characteristics of adsorption gas of hard coal and soft coal in different quality ratios were done according to the Langmuir single molecule layer absorption theory. Gas constant mensuration instrument WY-98B was used during the experiments. Isothermal adsorption curves, adsorption constants a and b of the mixed coal samples in different quality ratios were established for qualitative and quantitative analysis. The relationship curves of adsorption quantity with changing pressure and variation equation of adsorption constants a, b with changing thickness ratio shows that the thickness of soft layer and hard coal approximately equal, thus resulting in outburst at greatest risk, then a theoretical base for the mechanism of coal and gas outburst has been put forward and a technical support scheme for engineering control of gas outburst is laid out.展开更多
The gas chromatographic separations of aromatic compounds using special mixed stationary phases consisting of pp-beta-CD+AgNO3, pp-beta-CD+TINO3, pp-beta-CD+di-n-butly phthalate, pp-beta-CD+BPBHpB liquid crystalline, ...The gas chromatographic separations of aromatic compounds using special mixed stationary phases consisting of pp-beta-CD+AgNO3, pp-beta-CD+TINO3, pp-beta-CD+di-n-butly phthalate, pp-beta-CD+BPBHpB liquid crystalline, and bentone-34+AgNO3 were investigated. Besides pp-beta-CD+di-n-butyl phthalate, most of the separations deviated from the additivity and a synergistic effect was observed. The separation effects depend on the temperature and how mixing is accomplished.展开更多
For the nitrogen oxide removal processes,high performance gas mixer is deeply needed for the injection of NH3 or O3.In this study,a new type of double swirl static mixer in gas mixing was investigated using computatio...For the nitrogen oxide removal processes,high performance gas mixer is deeply needed for the injection of NH3 or O3.In this study,a new type of double swirl static mixer in gas mixing was investigated using computational fluid dynamics(CFD).The results obtained using Particle Image Velocimetry(PIV)correlated well with the results obtained from simulation.The comparisons in pressure loss between the experimental results and the simulation results showed that the model was suitable and accurate for the simulation of the static mixer.Optimal process conditions and design were investigated.When L/D equaled 4,coefficient of variation(COV)was<5%.The inlet velocity did not affect the distributions of turbulent kinetic energy.In terms of both COV and pressure loss,the inner connector is important in the design of the static mixer.The nozzle length should be set at 4 cm.Taking both COV and pressure loss into consideration,the optimal oblique degree is 450.The averaged kinetic energy changed according to process conditions and design.The new static mixer resulted in improved mixing performance in a more compact design.The new static mixer is more energy efficient compared with other SV static mixers.Therefore,the double swirl static mixer is promising in gas mixing.展开更多
In a rectangular fluidized bed combustor, the tracer gas is injected continuously into the bed from a point source at the center of the distributor plate. In this study, a general governing equation is formulated for ...In a rectangular fluidized bed combustor, the tracer gas is injected continuously into the bed from a point source at the center of the distributor plate. In this study, a general governing equation is formulated for tracer gas dispersion in the bed. An analytical solution is derived to estimate the dispersion coefficients, Dxand Dy, in a horizontal plane. The concentration profiles at different sampling heights with various gas velocities are plotted.Subsequently, to estimate the dispersion coefficients, surface fitting of the obtained analytical solution to the experimental data is performed. The dispersion coefficients obtained from this model are compared with those of a conventional model. Additionally, the effect of walls, bed height and gas injection rate on the dispersion coefficients in a horizontal plane is investigated, and the effect of distributor design on the dispersion coefficients in a horizontal plane is investigated with different tracer positions. It is found that Dxand Dyare nearly equivalent at a lower tracer gas ratio of the injected gas to the total gas flow rate. It is also demonstrated that the effect of bed height on Dxis minor. This model is also able to estimate the dispersion coefficients in the case of a multihorizontal nozzle distributor.展开更多
One of the major technical challenges in using carbon dioxide( CO2) as part of the cushion gas of the underground gas storage reservoir( UGSR) is the mixture of CO2and natural gas. To decrease the mixing extent and ma...One of the major technical challenges in using carbon dioxide( CO2) as part of the cushion gas of the underground gas storage reservoir( UGSR) is the mixture of CO2and natural gas. To decrease the mixing extent and manage the migration of the mixed zone,an understanding of the mechanism of CO2and natural gas mixing and the diffusion of the mixed gas in aquifer is necessary. In this paper,a numerical model based on the three dimensional gas-water two-phase flow theory and gas diffusion theory is developed to understand this mechanism. This model is validated by the actual operational data in Dazhangtuo UGSR in Tianjin City,China.Using the validated model,the mixed characteristic of CO2and natural gas and the migration mechanism of the mixed zone in an underground porous reservoir is further studied. Particularly,the impacts of the following factors on the migration mechanism are studied: the ratio of CO2injection,the reservoir porosity and the initial operating pressure. Based on the results,the optimal CO2injection ratio and an optimal control strategy to manage the migration of the mixed zone are obtained. These results provide technical guides for using CO2as cushion gas for UGSR in real projects.展开更多
BaCe0.8Pr0.2O3-α ceramic was synthesized by high temperature solid-state reaction. The structural characteristics and the phase purity of the crystal were determined using powder X-ray diffraction analysis. By using ...BaCe0.8Pr0.2O3-α ceramic was synthesized by high temperature solid-state reaction. The structural characteristics and the phase purity of the crystal were determined using powder X-ray diffraction analysis. By using the methods of AC impedance spectroscopy, gas concentration cell and electrochemical pumping of hydrogen, the conductivity and ionic transport number of BaCe0.8Pr0.2O3-α were measured, and the electrical conduction behavior of the material was investigated in different gases in the temperature range of 500-900℃. The results indicate that the material was of a single perovskite-type orthorhombic phase. From 500℃ to 900 ℃, electronic-hole conduction was dominant in dry and wet oxygen, air or nitrogen, and the total conductivity of the material increased slightly with increasing oxygen partial pressure in the oxygen partial pressure range studied. Ionic conduction was dominant in wet hydrogen, and the total conductivity was about one or two orders of magnitude higher than that in hydrogen-free atmosphere (oxygen, air or nitrogen)展开更多
Weld shape variation for different welding parameters is investigated on pure iron plate under gas tungsten arc (GTA) welding with argon-oxygen mixed shielding. Results showed that small addition of oxygen to the ar...Weld shape variation for different welding parameters is investigated on pure iron plate under gas tungsten arc (GTA) welding with argon-oxygen mixed shielding. Results showed that small addition of oxygen to the argon base shielding gas can effectively adjust the oxygen adsorption to the molten pool. An inward Marangoni convection occurs on the pool surface when the oxygen content in the weld pool is over the critical value, 80×10^-6, for pure iron plate under Ar-0.3%O2 mixed shielding. Low oxygen content in the weld pool changes the inward Marangoni to an outward direction under the Ar-0.1%O2 shielding. The GTA weld shape depends to a large extent on the pattern and strength of the Marangoni convection on the pool surface, which is determined by the content of surface active element, oxygen, in the weld pool and the welding parameters. The strength of the Marangoni convection on the liquid pool is a product of the temperature coefficient of the surface tension (dσ/dT) and the temperature gradient (dT/dr) on the pool surface. Different welding parameters will change the temperature distribution and gradient on the pool surface, and therefore, affect the strength of Marangoni convection and the weld shape.展开更多
Progress in hydrate thermodynamic study necessitates robust and fast models to be incorporated in reservoir simulation softwares. However, numerous models presented in the literature makes selection of the best,proper...Progress in hydrate thermodynamic study necessitates robust and fast models to be incorporated in reservoir simulation softwares. However, numerous models presented in the literature makes selection of the best,proper predictive model a cumbersome task. It is of industrial interest to make use of cubic equations of state(EOS) for modeling hydrate equilibria. In this regard, this study focuses on evaluation of three common EOSs including Peng–Robinson, Soave–Redlich–Kwong and Valderrama–Patel–Teja coupled with van der Waals and Platteeuw theory to predict hydrate P–T equilibrium of a real natural gas sample. Each EOS was accompanied with three mixing rules, including van der Waals(vd W),Avlonitis non-density dependent(ANDD) and general nonquadratic(GNQ). The prediction of cubic EOSs was in sufficient agreement with experimental data and with overall AARD% of less than unity. In addition, PR plus ANDD proved to be the most accurate model in this study for prediction of hydrate equilibria with AARD% of 0.166.It was observed that the accuracy of cubic EOSs studied in this paper depends on mixing rule coupled with them,especially at high-pressure conditions. Lastly, the present study does not include any adjustable parameter to be correlated with hydrate phase equilibrium data.展开更多
The occurrence of liquid condensation in natural gas accounts for new challenges during the interoperability between transmission networks,where condensation would lead to higher pressure drops,lower line capacity and...The occurrence of liquid condensation in natural gas accounts for new challenges during the interoperability between transmission networks,where condensation would lead to higher pressure drops,lower line capacity and may cause safety problem.A successful case of hydrocarbon dew point(HCDP)analysis is demonstrated during the mixing of natural gases in the transmission pipeline.Methods used to predict the HCDP are combined with equations of state(EOS)and characterization of C6+heavy components.Predictions are compared with measured HCDP with different concentrations of mixed gases at a wide range of pressure and temperature scopes.Software named"PipeGasAnalysis"is developed and helps to systematic analyze the condensation problem,which will provide the guidance for the design and operation of the network.展开更多
基金the Key Project of the National Research Program of China(2020YFB0606201)。
文摘A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic.
基金Supported by the National Natural Science Foundation of China (20376014) and Fujian Science and Technology Council Grant (HG99-01 ).
文摘The catalytic effects of single and mixed catalysts, i.e. single 3%Ca and 5%Na-BL(black liquor) catalysts and mixed 3%Ca+5%Na-BL catalyst, on carbon conversion, gasification reaction rate constant and activation energy, relative amount of harmful pollutant like sulphur containing gases have been investigated by thermogravimetry in steam gasification under temperature 750℃ to 950℃ at ambient pressure for three high-metarnorphous anthracites (Longyan, Fenghai and Youxia coals in Fujian Province). The mixed catalyst of 3%Ca+5%Na-BL increases greatly the carbon conversion and gasification rate constant by accelerating the gasification reaction C+H2O→CO+H2 due to presence of alkali surfacecompounds [COM], [CO2M] and exchanged calcium phenolate and calcium carboxylate (-COO)2. By adding CaCO3 into BL catalyst in gasification, in addition to improving the catalyst function and enhancing the carbon conversion, the effective desulphurization is also achieved, but the better operating temperature should be below 900℃. The homogenous and shrinking core models can be successfully employed to correlate the relations between the conversion and the gasification .time .and to estimate the reaction rate constant, The reaction acUvaUon energy and pre-exponential factor are estimated and the activation energy for mixed catalyst is in a range of 98.72-166.92 kJ·mol^-1, much less than 177.50-196.46 kJ·mol^-1 for non-catalytic steam gasification for three experimental coals.
基金supported by National Natural Science Foundation of China (Grant No. 50521503)National Basic Research Program of China (973 Program, Grant No. 2007CB714704)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z406)
文摘The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear.
基金funded by the Natural Science Foundation of Shandong Province (ZR202103050722)National Natural Science Foundation of China (41174098)。
文摘The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata in tight sandstone. First, multi-component composite seismic attributes are obtained.The strong nonlinear relationships between multi-component composite attributes and gas-bearing reservoirs can be constrained through a DNN. Therefore, we identify and predict the gas-bearing strata using a DNN. Then, sample data are fed into the DNN for training and testing. After optimized network parameters are determined by the performance curves and empirical formulas, the best deep learning gas-bearing prediction model is determined. The composite seismic attributes can then be fed into the model to extrapolate the hydrocarbon-bearing characteristics from known drilling areas to the entire region for predicting the gas reservoir distribution. Finally, we assess the proposed method in terms of the structure and fracture characteristics and predict favorable exploration areas for identifying gas reservoirs.
基金Supported by National 985 Project of China (No.985XK-015).
文摘An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental analysis of the mixed gas transport character. This model is tested using the binary and ternary mixed gas with various compositions through the PDMS membranes, and the predicted data of the permeation flux and the compositions of the permeated gas are in good agreement with the experimental ones, which indicates that the op-erational model is applicable for the evaluation of the permeation performance of mixed gas through PDMS mem-branes.
基金the financial support from the National Natural Science Foundation of China(No.21436009)
文摘Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.
文摘used-silical capillary columns containing heptakis(2、3、6-tri-o-pentyl)-β-cyclodextrinand dibenzo-18-crown-6 were prepared.By studying the selectivity of mixed stationary phases forsome solute pairs.as well as comparing with the heptakis(2.3、6-tri-O-pentyl)-β-cyclodextrin and thedibenzo-18-crown-6 used as individual stationary phase、the synergistic effects were observed.These effects were affected by the column temperature.mixed ratio and linear velocity of carrier gas.
基金financial support of Research Institute of Petroleum Industry
文摘Highly selective separation of CO_2 from its methane-containing binary gas mixture can be achieved by using Poly(ether-block-amide)(PEBAX)mixed matrix membranes(MMMs).According to FESEM and AFM analyses,silica-based nanoparticles were homogenously integrated within the polymer matrix,facilitating penetration of CO_2 through the membrane while acting as barrier for methane gas.The membrane containing 4.6 wt% fumed silica(FS)(PEBAX/4.6 wt%FS)exhibits astonishing selectivity results where binary gas mixture of CO_2/CH_4 was used as feed gas.As detected by gas chromatography,in the permeate side,data showed a significant increase of CO_2 permeance,while CH_4 transport through the mixed matrix membrane was not detectable.Moreover,PEBAX/4.6 wt%FS greatly exceeds the Robeson limit.According to data reported on CO_2/CH_4 gas pair separation in the literature,the results achieved in this work are beyond those data reported in the literature,particularly when PEBAX/4.6 wt%FS membrane was utilized.
基金This work was supported by“Thirteenth Five-Year”national science and technology major Project(No.2017ZX05018005-004)CNPC fundamental research project(No.2016E-0604)National Natural Science Foundation of China(No.41374111).
文摘Multi-component seismic exploration is an important technique in the utilization of P-waves and converted S-waves for oil and gas exploration.It has unique advantages in the structural imaging of gas zones,reservoir prediction,lithology,and gas-water identifi cation,and the development direction and degree of fractures.Multi-component joint inversion is one of the most important steps in multi-component exploration.In this paper,starting from the basic principle of multi-component joint inversion,the diff erences between the method and single P-wave inversion are introduced.Next,the technique is applied to the PLN area of the Sichuan Basin,and the P-wave impedance,S-wave impedance,and density are obtained based on multi-component joint inversion.Through the velocity and lithology,porosity,and gas saturation fi tting formulas,prediction results are calculated,and the results are analyzed.Finally,multi-component joint inversion and single P-wave inversion are compared in eff ective reservoir prediction.The results show that multi-component joint inversion increases the constraints on the inversion conditions,reduces the multi-solution of a single P-wave inversion,and is more objective and reliable for the identification of reservoirs,effectively improving the accuracy of oil and gas reservoir prediction and development.
基金supported by the National Natural Science Foundation of China(No.52174038 and No.52004307)China Petroleum Science and Technology Project-major project-Research on tight oil-shale oil reservoir engineering methods and key technologies in Ordos Basin(ZLZX2020-02-04)Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC015).
文摘An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.
文摘Recovery and purification of ethane has a significant impact on economic benefit improvement of the high-ethane content natural gas.However,current LNG-NGL integrated processes mainly focus on conventional natural gas,which are not applicable to natural gas with high ethane content.To fill this gap,three dual mixed refrigerant processes are proposed for simulation study of high-ethane content natural gas liquefaction.The proposed processes are optimized by a combination method of sequence optimization and genetic algorithm.Comparatively analysis is conducted to evaluate the three processes from the energetic and exergetic points of view.The results show that the power consumption of Process 3 which compressing natural gas after distillation is the lowest.For safety or other considerations,some common compositions of the mixed refrigerant may need to be removed under certain circumstances.Considering this,case studies of mixed refrigerant involving six composition combinations are carried out to investigate the effects of refrigerant selection on the process performance.
基金Supported by the National Nature Science Foundation of China (50874089) the Doctoral Program Foundation of Institutions of Higher Education of China(20096121110002) Scientific Research Program by Shaanxi Provincial Education Department ( 11 JK0774)
文摘Based on the single coal adsorption gas, hard coal and soft coal of intake airway in Shanxi Heshun Tianchi Coal Mine were chosen to simulate the soft coal seams in coalbed as those in different qualities are mixed with delamination. Experiments on characteristics of adsorption gas of hard coal and soft coal in different quality ratios were done according to the Langmuir single molecule layer absorption theory. Gas constant mensuration instrument WY-98B was used during the experiments. Isothermal adsorption curves, adsorption constants a and b of the mixed coal samples in different quality ratios were established for qualitative and quantitative analysis. The relationship curves of adsorption quantity with changing pressure and variation equation of adsorption constants a, b with changing thickness ratio shows that the thickness of soft layer and hard coal approximately equal, thus resulting in outburst at greatest risk, then a theoretical base for the mechanism of coal and gas outburst has been put forward and a technical support scheme for engineering control of gas outburst is laid out.
文摘The gas chromatographic separations of aromatic compounds using special mixed stationary phases consisting of pp-beta-CD+AgNO3, pp-beta-CD+TINO3, pp-beta-CD+di-n-butly phthalate, pp-beta-CD+BPBHpB liquid crystalline, and bentone-34+AgNO3 were investigated. Besides pp-beta-CD+di-n-butyl phthalate, most of the separations deviated from the additivity and a synergistic effect was observed. The separation effects depend on the temperature and how mixing is accomplished.
基金financially supported by National Key Research and Development Plan of China(2016YFC0204700)Key Project of Zhejiang Provincial Science and Technology Program+1 种基金Zhejiang Provincial“151”Talents ProgramProgram for Zhejiang Leading Team of S&T Innovation(Grant No.2013TD07)。
文摘For the nitrogen oxide removal processes,high performance gas mixer is deeply needed for the injection of NH3 or O3.In this study,a new type of double swirl static mixer in gas mixing was investigated using computational fluid dynamics(CFD).The results obtained using Particle Image Velocimetry(PIV)correlated well with the results obtained from simulation.The comparisons in pressure loss between the experimental results and the simulation results showed that the model was suitable and accurate for the simulation of the static mixer.Optimal process conditions and design were investigated.When L/D equaled 4,coefficient of variation(COV)was<5%.The inlet velocity did not affect the distributions of turbulent kinetic energy.In terms of both COV and pressure loss,the inner connector is important in the design of the static mixer.The nozzle length should be set at 4 cm.Taking both COV and pressure loss into consideration,the optimal oblique degree is 450.The averaged kinetic energy changed according to process conditions and design.The new static mixer resulted in improved mixing performance in a more compact design.The new static mixer is more energy efficient compared with other SV static mixers.Therefore,the double swirl static mixer is promising in gas mixing.
基金The financial support from the Ministry of Science and Technology under Grant MOST 105-3113-E-033-001
文摘In a rectangular fluidized bed combustor, the tracer gas is injected continuously into the bed from a point source at the center of the distributor plate. In this study, a general governing equation is formulated for tracer gas dispersion in the bed. An analytical solution is derived to estimate the dispersion coefficients, Dxand Dy, in a horizontal plane. The concentration profiles at different sampling heights with various gas velocities are plotted.Subsequently, to estimate the dispersion coefficients, surface fitting of the obtained analytical solution to the experimental data is performed. The dispersion coefficients obtained from this model are compared with those of a conventional model. Additionally, the effect of walls, bed height and gas injection rate on the dispersion coefficients in a horizontal plane is investigated, and the effect of distributor design on the dispersion coefficients in a horizontal plane is investigated with different tracer positions. It is found that Dxand Dyare nearly equivalent at a lower tracer gas ratio of the injected gas to the total gas flow rate. It is also demonstrated that the effect of bed height on Dxis minor. This model is also able to estimate the dispersion coefficients in the case of a multihorizontal nozzle distributor.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51276048)
文摘One of the major technical challenges in using carbon dioxide( CO2) as part of the cushion gas of the underground gas storage reservoir( UGSR) is the mixture of CO2and natural gas. To decrease the mixing extent and manage the migration of the mixed zone,an understanding of the mechanism of CO2and natural gas mixing and the diffusion of the mixed gas in aquifer is necessary. In this paper,a numerical model based on the three dimensional gas-water two-phase flow theory and gas diffusion theory is developed to understand this mechanism. This model is validated by the actual operational data in Dazhangtuo UGSR in Tianjin City,China.Using the validated model,the mixed characteristic of CO2and natural gas and the migration mechanism of the mixed zone in an underground porous reservoir is further studied. Particularly,the impacts of the following factors on the migration mechanism are studied: the ratio of CO2injection,the reservoir porosity and the initial operating pressure. Based on the results,the optimal CO2injection ratio and an optimal control strategy to manage the migration of the mixed zone are obtained. These results provide technical guides for using CO2as cushion gas for UGSR in real projects.
基金This work was supported by the National Natural Science Foundation of China (No.20771079) and the Natural Science Foundation of Education Department of Jiangsu Province (No.07KJB150126).
文摘BaCe0.8Pr0.2O3-α ceramic was synthesized by high temperature solid-state reaction. The structural characteristics and the phase purity of the crystal were determined using powder X-ray diffraction analysis. By using the methods of AC impedance spectroscopy, gas concentration cell and electrochemical pumping of hydrogen, the conductivity and ionic transport number of BaCe0.8Pr0.2O3-α were measured, and the electrical conduction behavior of the material was investigated in different gases in the temperature range of 500-900℃. The results indicate that the material was of a single perovskite-type orthorhombic phase. From 500℃ to 900 ℃, electronic-hole conduction was dominant in dry and wet oxygen, air or nitrogen, and the total conductivity of the material increased slightly with increasing oxygen partial pressure in the oxygen partial pressure range studied. Ionic conduction was dominant in wet hydrogen, and the total conductivity was about one or two orders of magnitude higher than that in hydrogen-free atmosphere (oxygen, air or nitrogen)
文摘Weld shape variation for different welding parameters is investigated on pure iron plate under gas tungsten arc (GTA) welding with argon-oxygen mixed shielding. Results showed that small addition of oxygen to the argon base shielding gas can effectively adjust the oxygen adsorption to the molten pool. An inward Marangoni convection occurs on the pool surface when the oxygen content in the weld pool is over the critical value, 80×10^-6, for pure iron plate under Ar-0.3%O2 mixed shielding. Low oxygen content in the weld pool changes the inward Marangoni to an outward direction under the Ar-0.1%O2 shielding. The GTA weld shape depends to a large extent on the pattern and strength of the Marangoni convection on the pool surface, which is determined by the content of surface active element, oxygen, in the weld pool and the welding parameters. The strength of the Marangoni convection on the liquid pool is a product of the temperature coefficient of the surface tension (dσ/dT) and the temperature gradient (dT/dr) on the pool surface. Different welding parameters will change the temperature distribution and gradient on the pool surface, and therefore, affect the strength of Marangoni convection and the weld shape.
文摘Progress in hydrate thermodynamic study necessitates robust and fast models to be incorporated in reservoir simulation softwares. However, numerous models presented in the literature makes selection of the best,proper predictive model a cumbersome task. It is of industrial interest to make use of cubic equations of state(EOS) for modeling hydrate equilibria. In this regard, this study focuses on evaluation of three common EOSs including Peng–Robinson, Soave–Redlich–Kwong and Valderrama–Patel–Teja coupled with van der Waals and Platteeuw theory to predict hydrate P–T equilibrium of a real natural gas sample. Each EOS was accompanied with three mixing rules, including van der Waals(vd W),Avlonitis non-density dependent(ANDD) and general nonquadratic(GNQ). The prediction of cubic EOSs was in sufficient agreement with experimental data and with overall AARD% of less than unity. In addition, PR plus ANDD proved to be the most accurate model in this study for prediction of hydrate equilibria with AARD% of 0.166.It was observed that the accuracy of cubic EOSs studied in this paper depends on mixing rule coupled with them,especially at high-pressure conditions. Lastly, the present study does not include any adjustable parameter to be correlated with hydrate phase equilibrium data.
基金Project(2011ZX05026-004-03)supported by the Key National Science and Technology Specific Program,ChinaProject(NCET-12-0969)supported by the Program for New Century Excellent Talents in University,China+1 种基金Project(51104167)supported by the National Natural Science Foundation of ChinaProject(BJ-2011-02)supported by the Research Funds of China University of Petroleum-Beijing
文摘The occurrence of liquid condensation in natural gas accounts for new challenges during the interoperability between transmission networks,where condensation would lead to higher pressure drops,lower line capacity and may cause safety problem.A successful case of hydrocarbon dew point(HCDP)analysis is demonstrated during the mixing of natural gases in the transmission pipeline.Methods used to predict the HCDP are combined with equations of state(EOS)and characterization of C6+heavy components.Predictions are compared with measured HCDP with different concentrations of mixed gases at a wide range of pressure and temperature scopes.Software named"PipeGasAnalysis"is developed and helps to systematic analyze the condensation problem,which will provide the guidance for the design and operation of the network.