Passive image interferometry (PII) is becoming a powerful tool for detecting the temporal variations in the Earth's structure, which applies coda wave interferometry to the waveforrns from the cross-correlation of ...Passive image interferometry (PII) is becoming a powerful tool for detecting the temporal variations in the Earth's structure, which applies coda wave interferometry to the waveforrns from the cross-correlation of seismic ambient noise. There are four techniques for estimating temporal change of seismic velocity with PII: moving-window cross-correlation technique (MWCCT), moving-window cross-spectrum technique (MWCST), stretching technique (ST) and moving-window stretching technique (MWST). In this paper, we use the continuous seismic records from a typical station pair near the Wenchuan Ms8.0 earthquake fault zone and generate three sets of waveforms by stacking cross-correlation function of ambient noise with different numbers of days, and then apply four techniques to processing the three sets of waveforms and compare their results. Our results indicate that the techniques based on moving-window (MWCCT, MWCST and MWST) are superior in detecting the change of seismic velocity, and the MWCST can give a better estimate of velocity change than the other moving-window techniques due to measurement error. We also investigate the clock errors and their influences on measuring velocity change. We find that when the clock errors are not very large, they have limited impact on the estimate of the velocity change with the moving-window techniques.展开更多
Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion ...Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.展开更多
The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata ...The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata in tight sandstone. First, multi-component composite seismic attributes are obtained.The strong nonlinear relationships between multi-component composite attributes and gas-bearing reservoirs can be constrained through a DNN. Therefore, we identify and predict the gas-bearing strata using a DNN. Then, sample data are fed into the DNN for training and testing. After optimized network parameters are determined by the performance curves and empirical formulas, the best deep learning gas-bearing prediction model is determined. The composite seismic attributes can then be fed into the model to extrapolate the hydrocarbon-bearing characteristics from known drilling areas to the entire region for predicting the gas reservoir distribution. Finally, we assess the proposed method in terms of the structure and fracture characteristics and predict favorable exploration areas for identifying gas reservoirs.展开更多
In the past twenty years, the proportion of coal in primary-energy consumption in China is generally between 71.3% and 76.5%. The output of coal was 1.374 billion tons in 1996, and 1.21 tons in 1998, which ranked firs...In the past twenty years, the proportion of coal in primary-energy consumption in China is generally between 71.3% and 76.5%. The output of coal was 1.374 billion tons in 1996, and 1.21 tons in 1998, which ranked first in the world. Now coal is mined mainly with mechanization in China, which is planned to reach 80% in major State-owned coal mines in 2000 according to the planning of the government (Li et al., 1998; Tang Dejin, 1998).展开更多
In many seismically active regions of the world there are large numbers of masonry buildings. Most of these buildings have not been designed for seismic loads. Recent earthquakes have shown that many of these building...In many seismically active regions of the world there are large numbers of masonry buildings. Most of these buildings have not been designed for seismic loads. Recent earthquakes have shown that many of these buildings are seismically vulnerable and should be considered for retrofitting. Different conventional and unconventional retrofitting techniques are available to increase the strength and/or ductility of unreinforced masonry (URM) walls. This paper reviews and discusses seismic retrofitting of masonry walls with emphasis on the conventional techniques. Retrofitting procedures are discussed with regard to a case study: a stone masonry building in lrpinia region, damaged by the 1980 earthquake. The interventions are evaluated by means of finite elements with a macroelement obtained with a homogenization technique. Linear and nonlinear procedures are compared, and peculiarities of each procedure are shown.展开更多
3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper,...3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.展开更多
In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements...In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements when upgoing P- and SV-waves arrive at the sea floor. If the sea floor P wave velocity, S wave velocity, and density are known, the separation can be achieved in ther-p domain. The separated wavefields are then transformed to the time domain. A method of separating P- and SV-wavefields is presented in this paper and used to effectively separate P- and SV-wavefields in synthetic and real data. The application to real data shows that this method is feasible and effective. It also can be used for free surface data.展开更多
The Ordos basin is a stable craton whose late Paleozoic undergoes two sedimentary stages: from the middle- late Carboniferous offshore plain to the Permian continental river and lake delta. Sandstones in delta plain c...The Ordos basin is a stable craton whose late Paleozoic undergoes two sedimentary stages: from the middle- late Carboniferous offshore plain to the Permian continental river and lake delta. Sandstones in delta plain channels, delta-front river mouth bars and tidal channels are well developed. The sandstones are distributed on or between the genetic source rocks, forming good gas source conditions with widespread subtle lithologic gas pools of low porosity, low permeability, low pressure and low abundance. In recent years, a series of experiments has been done, aimed at overcoming difficulties in the exploration of lithologic gas pools. A set of exploration techniques, focusing on geological appraisal, seismic exploration, accurate logging evaluation and interpretation, well testing fracturing, has been developed to guide the exploration into the upper Paleozoic in the basin, leading to the discoveries of four large gas fields: Sulige, Yulin, Wushenqi and Mizhi.展开更多
A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduce...A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.展开更多
As one of the most important urban lifeline systems,a water distribution system can be damaged under a strong earthquake,and the damage cannot easily be located,especially immediately after the event.This often causes...As one of the most important urban lifeline systems,a water distribution system can be damaged under a strong earthquake,and the damage cannot easily be located,especially immediately after the event.This often causes tremendous difficulties to post-earthquake emergency response and recovery activities.This paper proposes a methodology to locate seismic damage to a water distribution system by monitoring water head online at some nodes in the water distribution system.An artificial neural network-based inverse analysis method is developed to estimate the water head variations at all nodes that are not monitored based on the water head variations at the nodes that are monitored.The methodology provides a quick,effective,and practical way to locate seismic damage to a water distribution system.展开更多
Shenhu area in South China Sea includes extensive collapse and diapir structures,forming high-angle faults and vertical fracture system,which functions as a fluid migration channel for gas hydrate formation.In order t...Shenhu area in South China Sea includes extensive collapse and diapir structures,forming high-angle faults and vertical fracture system,which functions as a fluid migration channel for gas hydrate formation.In order to improve the imaging precision of natural gas hydrate in this area,especially for fault and fracture structures,the present work propose a velocity stitching technique that accelerates effectively the convergence of the shallow seafloor,indicating seafloor horizon interpretation and the initial interval velocity for model building.In the depth domain,pre-stack depth migration and residual curvature are built into the model based on high-precision grid-tomography velocity inversion,after several rounds of tomographic iterations,as the residual velocity field converges gradually.Test results of the Shenhu area show that the imaging precision of the fault zone is obviously improved,the fracture structures appear more clearly,the wave group characteristics significantly change for the better and the signal-to-noise ratio and resolution are improved.These improvements provide the necessary basis for the new reservoir model and field drilling risk tips,help optimize the favorable drilling target,and are crucial for the natural gas resource potential evaluation.展开更多
The accuracy and effi ciency of the modelling techniques utilized to model the nonlinear behavior of structural components is a signifi cant issue in earthquake engineering. In this study, the suffi ciency of three di...The accuracy and effi ciency of the modelling techniques utilized to model the nonlinear behavior of structural components is a signifi cant issue in earthquake engineering. In this study, the suffi ciency of three diff erent modelling techniques that can be employed to simulate the structural behavior of columns is investigated. A fi ber-based fi nite length plastic hinge (FB-FLPH) model is calibrated in this study. In order to calibrate the FB-FLPH model, a novel database of the cyclic behavior of hollow steel columns under simultaneous axial and lateral loading cycles with varying amplitudes is used. By employing the FB-FLPH model calibrated in this study, the interaction of the axial force and the bending moment in columns is directly taken into account, and the deterioration in the cyclic behavior of these members is implicitly considered. The superiority of the calibrated FB-FLPH modelling approach is examined compared with the cases in which conventional fi ber-based distributed plasticity and concentrated plasticity models are utilized. The effi ciency of the enumerated modelling techniques is probed when they are implemented to model the columns of a typical special moment frame in order to prove the advantage of the FB-FLPH modelling approach.展开更多
The root mean square(RMS) difference of time-lapse seismic amplitudes is routinely used to identify the substituted fluid type in a reservoir during oil field production and recovery. By a time-lapse seismic method, w...The root mean square(RMS) difference of time-lapse seismic amplitudes is routinely used to identify the substituted fluid type in a reservoir during oil field production and recovery. By a time-lapse seismic method, we study the effects of fluid substitution in a physical model, which is an analogy of the three-dimensional inhomogeneous reservoir. For a weak inhomogeneous medium, gas/oil substitution results in positive anomalies in the reservoir layers, and negative anomalies below the bottom of the reservoir layers; while water/oil substitution causes only weak variations in the reservoir layers, but positive anomalies below the bottom of the reservoir layers. For the strong inhomogeneous medium, no matter what kind of fluid substitution(gas/oil or water/oil), there are significant anomalies in seismic amplitude difference attributes both in and below the reservoir layers. Therefore, for weak inhomogeneous media, such as tight sandstone or thin interbedded layers, the RMS amplitude difference attributes can be used to monitor fluid changes and predict the drilling direction; for inhomogeneous medium with karst carves or fractures, it is difficult to accurately determine the distribution of fluids with the RMS amplitude difference attributes.展开更多
Seismic pounding phenomena, particularly the collision of neighboring buildings under long-period ground motion, are becoming a significant issue in Japan. We focused on a specific apartment structure called the Nuevo...Seismic pounding phenomena, particularly the collision of neighboring buildings under long-period ground motion, are becoming a significant issue in Japan. We focused on a specific apartment structure called the Nuevo Leon buildings in the Tlatelolco district of Mexico City, which consisted of three similar buildings built consecutively with narrow expansion joints between the buildings. Two out of the three buildings collapsed completely in the 1985 Mexican earthquake. Using a finite element code based on the adaptively shifted integration (ASI)-Gauss technique, a seismic pounding analysis is performed on a simulated model of the Nuevo Leon buildings to understand the impact and collapse behavior of structures built near each other. The numerical code used in the analysis provides a higher computational efficiency than the conventional code for this type of problem and enables us to address dynamic behavior with strong nonlinearities, including phenomena such as member fracture and elemental contact. Contact release and recontact algorithms are developed and implemented in the code to understand the complex behaviors of structural members during seismic pounding and the collapse sequence. According to the numerical results, the collision of the buildings may be a result of the difference of natural periods between the neighboring buildings. This difference was detected in similar buildings from the damages caused by previous earthquakes. By setting the natural period of the north building to be 25% longer than the other periods, the ground motion, which hada relatively long period of 2 s, first caused the collision between the north and the center buildings. This collision eventually led to the collapse of the centerbuilding, followed by the destruction of the north building.展开更多
The Fuyang oil-layer in North Songliao Basin is characterized by thin interbedded sands and shales, strong lateral variation, strong reservoir heterogeniety, and so on. The thickness of individual sand layers is gener...The Fuyang oil-layer in North Songliao Basin is characterized by thin interbedded sands and shales, strong lateral variation, strong reservoir heterogeniety, and so on. The thickness of individual sand layers is generally 3 - 5 m. Identifying the channel sand-bodies of the Fuyang oil layer using seismic techniques is very difficult due to the low seismic resolution. Taking the GTZ area as an example, we discuss the genetic characteristics of the channel sand-bodies and point out the real difficulty in using seismic techniques to predict the channel sand-bodies. Two methods for the identification of channels are presented: frequency spectrum imaging and pre-stack azimuthal anisotropy. Identifying the channel sand-bodies in Fuyu oil-layer using the two seismic methods results in a success rate up to 80% compared with well data.展开更多
The seismic behaviors of an integral concreting frame, a light steel storey-adding frame and a storeyadding frame strengthened with carbon fiber reinforced polymer(CFRP)were investigated under low-cycle and repeated l...The seismic behaviors of an integral concreting frame, a light steel storey-adding frame and a storeyadding frame strengthened with carbon fiber reinforced polymer(CFRP)were investigated under low-cycle and repeated load(scale 1∶3). The failure characteristics, hysteretic behavior, rigidity degeneracy, deflection ductility and energy-dissipation capacity of the three specimens were compared. The test results reveal that chemicallybonded rebar technique can meet the requirements of storey-adding engineering. The carrying capacity, the deflection ductility, the energy-dissipating capacity and seismic performance of the light steel storey-adding frame are higher than those of the integral concreting frame, and they are the highest in the storey-adding frame strengthened with CFRP.展开更多
基金supported by National Natural Science Foundation of China (No. 41074061)Basic Research Plan of the Institute of Earthquake Science, China Earthquake Administration (No. 2007-13)
文摘Passive image interferometry (PII) is becoming a powerful tool for detecting the temporal variations in the Earth's structure, which applies coda wave interferometry to the waveforrns from the cross-correlation of seismic ambient noise. There are four techniques for estimating temporal change of seismic velocity with PII: moving-window cross-correlation technique (MWCCT), moving-window cross-spectrum technique (MWCST), stretching technique (ST) and moving-window stretching technique (MWST). In this paper, we use the continuous seismic records from a typical station pair near the Wenchuan Ms8.0 earthquake fault zone and generate three sets of waveforms by stacking cross-correlation function of ambient noise with different numbers of days, and then apply four techniques to processing the three sets of waveforms and compare their results. Our results indicate that the techniques based on moving-window (MWCCT, MWCST and MWST) are superior in detecting the change of seismic velocity, and the MWCST can give a better estimate of velocity change than the other moving-window techniques due to measurement error. We also investigate the clock errors and their influences on measuring velocity change. We find that when the clock errors are not very large, they have limited impact on the estimate of the velocity change with the moving-window techniques.
文摘Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.
基金funded by the Natural Science Foundation of Shandong Province (ZR202103050722)National Natural Science Foundation of China (41174098)。
文摘The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata in tight sandstone. First, multi-component composite seismic attributes are obtained.The strong nonlinear relationships between multi-component composite attributes and gas-bearing reservoirs can be constrained through a DNN. Therefore, we identify and predict the gas-bearing strata using a DNN. Then, sample data are fed into the DNN for training and testing. After optimized network parameters are determined by the performance curves and empirical formulas, the best deep learning gas-bearing prediction model is determined. The composite seismic attributes can then be fed into the model to extrapolate the hydrocarbon-bearing characteristics from known drilling areas to the entire region for predicting the gas reservoir distribution. Finally, we assess the proposed method in terms of the structure and fracture characteristics and predict favorable exploration areas for identifying gas reservoirs.
文摘In the past twenty years, the proportion of coal in primary-energy consumption in China is generally between 71.3% and 76.5%. The output of coal was 1.374 billion tons in 1996, and 1.21 tons in 1998, which ranked first in the world. Now coal is mined mainly with mechanization in China, which is planned to reach 80% in major State-owned coal mines in 2000 according to the planning of the government (Li et al., 1998; Tang Dejin, 1998).
文摘In many seismically active regions of the world there are large numbers of masonry buildings. Most of these buildings have not been designed for seismic loads. Recent earthquakes have shown that many of these buildings are seismically vulnerable and should be considered for retrofitting. Different conventional and unconventional retrofitting techniques are available to increase the strength and/or ductility of unreinforced masonry (URM) walls. This paper reviews and discusses seismic retrofitting of masonry walls with emphasis on the conventional techniques. Retrofitting procedures are discussed with regard to a case study: a stone masonry building in lrpinia region, damaged by the 1980 earthquake. The interventions are evaluated by means of finite elements with a macroelement obtained with a homogenization technique. Linear and nonlinear procedures are compared, and peculiarities of each procedure are shown.
文摘3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.
基金This research is sponsored by National Natural Science Foundation of China (No. 40272041) and Innovative Foundation of CNPC (N0. 04E702).
文摘In multi-component seismic exploration, the horizontal and vertical components both contain P- and SV-waves. The P- and SV-wavefields in a seismic record can be separated by their horizontal and vertical displacements when upgoing P- and SV-waves arrive at the sea floor. If the sea floor P wave velocity, S wave velocity, and density are known, the separation can be achieved in ther-p domain. The separated wavefields are then transformed to the time domain. A method of separating P- and SV-wavefields is presented in this paper and used to effectively separate P- and SV-wavefields in synthetic and real data. The application to real data shows that this method is feasible and effective. It also can be used for free surface data.
文摘The Ordos basin is a stable craton whose late Paleozoic undergoes two sedimentary stages: from the middle- late Carboniferous offshore plain to the Permian continental river and lake delta. Sandstones in delta plain channels, delta-front river mouth bars and tidal channels are well developed. The sandstones are distributed on or between the genetic source rocks, forming good gas source conditions with widespread subtle lithologic gas pools of low porosity, low permeability, low pressure and low abundance. In recent years, a series of experiments has been done, aimed at overcoming difficulties in the exploration of lithologic gas pools. A set of exploration techniques, focusing on geological appraisal, seismic exploration, accurate logging evaluation and interpretation, well testing fracturing, has been developed to guide the exploration into the upper Paleozoic in the basin, leading to the discoveries of four large gas fields: Sulige, Yulin, Wushenqi and Mizhi.
基金Projects(51908557,51378510)supported by the National Natural Science Foundation of China。
文摘A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.
基金National Natural Science Foundation of China under Grant No.59878032
文摘As one of the most important urban lifeline systems,a water distribution system can be damaged under a strong earthquake,and the damage cannot easily be located,especially immediately after the event.This often causes tremendous difficulties to post-earthquake emergency response and recovery activities.This paper proposes a methodology to locate seismic damage to a water distribution system by monitoring water head online at some nodes in the water distribution system.An artificial neural network-based inverse analysis method is developed to estimate the water head variations at all nodes that are not monitored based on the water head variations at the nodes that are monitored.The methodology provides a quick,effective,and practical way to locate seismic damage to a water distribution system.
基金This study was financially supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0207)Dedicated Fund for Promoting High-Quality Economic Development in Guangdong Province(Marine Economic Development Project)(GDNRC[2020]045)the State Key Laboratory of Marine Geology of Tongji University(MGK202007).
文摘Shenhu area in South China Sea includes extensive collapse and diapir structures,forming high-angle faults and vertical fracture system,which functions as a fluid migration channel for gas hydrate formation.In order to improve the imaging precision of natural gas hydrate in this area,especially for fault and fracture structures,the present work propose a velocity stitching technique that accelerates effectively the convergence of the shallow seafloor,indicating seafloor horizon interpretation and the initial interval velocity for model building.In the depth domain,pre-stack depth migration and residual curvature are built into the model based on high-precision grid-tomography velocity inversion,after several rounds of tomographic iterations,as the residual velocity field converges gradually.Test results of the Shenhu area show that the imaging precision of the fault zone is obviously improved,the fracture structures appear more clearly,the wave group characteristics significantly change for the better and the signal-to-noise ratio and resolution are improved.These improvements provide the necessary basis for the new reservoir model and field drilling risk tips,help optimize the favorable drilling target,and are crucial for the natural gas resource potential evaluation.
文摘The accuracy and effi ciency of the modelling techniques utilized to model the nonlinear behavior of structural components is a signifi cant issue in earthquake engineering. In this study, the suffi ciency of three diff erent modelling techniques that can be employed to simulate the structural behavior of columns is investigated. A fi ber-based fi nite length plastic hinge (FB-FLPH) model is calibrated in this study. In order to calibrate the FB-FLPH model, a novel database of the cyclic behavior of hollow steel columns under simultaneous axial and lateral loading cycles with varying amplitudes is used. By employing the FB-FLPH model calibrated in this study, the interaction of the axial force and the bending moment in columns is directly taken into account, and the deterioration in the cyclic behavior of these members is implicitly considered. The superiority of the calibrated FB-FLPH modelling approach is examined compared with the cases in which conventional fi ber-based distributed plasticity and concentrated plasticity models are utilized. The effi ciency of the enumerated modelling techniques is probed when they are implemented to model the columns of a typical special moment frame in order to prove the advantage of the FB-FLPH modelling approach.
基金Project(2013CB228600)supported by the National Basic Research Program of China
文摘The root mean square(RMS) difference of time-lapse seismic amplitudes is routinely used to identify the substituted fluid type in a reservoir during oil field production and recovery. By a time-lapse seismic method, we study the effects of fluid substitution in a physical model, which is an analogy of the three-dimensional inhomogeneous reservoir. For a weak inhomogeneous medium, gas/oil substitution results in positive anomalies in the reservoir layers, and negative anomalies below the bottom of the reservoir layers; while water/oil substitution causes only weak variations in the reservoir layers, but positive anomalies below the bottom of the reservoir layers. For the strong inhomogeneous medium, no matter what kind of fluid substitution(gas/oil or water/oil), there are significant anomalies in seismic amplitude difference attributes both in and below the reservoir layers. Therefore, for weak inhomogeneous media, such as tight sandstone or thin interbedded layers, the RMS amplitude difference attributes can be used to monitor fluid changes and predict the drilling direction; for inhomogeneous medium with karst carves or fractures, it is difficult to accurately determine the distribution of fluids with the RMS amplitude difference attributes.
文摘Seismic pounding phenomena, particularly the collision of neighboring buildings under long-period ground motion, are becoming a significant issue in Japan. We focused on a specific apartment structure called the Nuevo Leon buildings in the Tlatelolco district of Mexico City, which consisted of three similar buildings built consecutively with narrow expansion joints between the buildings. Two out of the three buildings collapsed completely in the 1985 Mexican earthquake. Using a finite element code based on the adaptively shifted integration (ASI)-Gauss technique, a seismic pounding analysis is performed on a simulated model of the Nuevo Leon buildings to understand the impact and collapse behavior of structures built near each other. The numerical code used in the analysis provides a higher computational efficiency than the conventional code for this type of problem and enables us to address dynamic behavior with strong nonlinearities, including phenomena such as member fracture and elemental contact. Contact release and recontact algorithms are developed and implemented in the code to understand the complex behaviors of structural members during seismic pounding and the collapse sequence. According to the numerical results, the collision of the buildings may be a result of the difference of natural periods between the neighboring buildings. This difference was detected in similar buildings from the damages caused by previous earthquakes. By setting the natural period of the north building to be 25% longer than the other periods, the ground motion, which hada relatively long period of 2 s, first caused the collision between the north and the center buildings. This collision eventually led to the collapse of the centerbuilding, followed by the destruction of the north building.
文摘The Fuyang oil-layer in North Songliao Basin is characterized by thin interbedded sands and shales, strong lateral variation, strong reservoir heterogeniety, and so on. The thickness of individual sand layers is generally 3 - 5 m. Identifying the channel sand-bodies of the Fuyang oil layer using seismic techniques is very difficult due to the low seismic resolution. Taking the GTZ area as an example, we discuss the genetic characteristics of the channel sand-bodies and point out the real difficulty in using seismic techniques to predict the channel sand-bodies. Two methods for the identification of channels are presented: frequency spectrum imaging and pre-stack azimuthal anisotropy. Identifying the channel sand-bodies in Fuyu oil-layer using the two seismic methods results in a success rate up to 80% compared with well data.
基金Supported by the National Natural Science Foundation of China(No.51379142)
文摘The seismic behaviors of an integral concreting frame, a light steel storey-adding frame and a storeyadding frame strengthened with carbon fiber reinforced polymer(CFRP)were investigated under low-cycle and repeated load(scale 1∶3). The failure characteristics, hysteretic behavior, rigidity degeneracy, deflection ductility and energy-dissipation capacity of the three specimens were compared. The test results reveal that chemicallybonded rebar technique can meet the requirements of storey-adding engineering. The carrying capacity, the deflection ductility, the energy-dissipating capacity and seismic performance of the light steel storey-adding frame are higher than those of the integral concreting frame, and they are the highest in the storey-adding frame strengthened with CFRP.