期刊文献+
共找到12,551篇文章
< 1 2 250 >
每页显示 20 50 100
Recent innovations in laser additive manufacturing of titanium alloys 被引量:1
1
作者 Jinlong Su Fulin Jiang +8 位作者 Jie Teng Lequn Chen Ming Yan Guillermo Requena Lai-Chang Zhang Y Morris Wang Ilya V Okulov Hongmei Zhu Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期2-37,共36页
Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite... Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted. 展开更多
关键词 additive manufacturing titanium alloys auxiliary field machine learning aerospace materials lightweight materials novel alloys
下载PDF
Microstructure evolution and strengthening mechanism of high -performance powder metallurgy TA15 titanium alloy by hot rolling 被引量:1
2
作者 Ying Gao Ce Zhang +1 位作者 Jiazhen Zhang Xin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1426-1436,共11页
Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titaniu... Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems. 展开更多
关键词 elemental powder powder metallurgy titanium alloy hot rolling strength and plasticity
下载PDF
Comparison of electrochemical behaviors of Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe and Ti-6Al-4V titanium alloys in NaNO_(3) solution 被引量:1
3
作者 Jia Liu Shuanglu Duan +1 位作者 Xiaokang Yue Ningsong Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期750-763,共14页
The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an effici... The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed. 展开更多
关键词 electrochemical machining dissolution behavior β-CEZ titanium alloy polarization curve current efficiency
下载PDF
Preparation and Properties of Cu-Containing High-entropy Alloy Nitride Films by Magnetron Sputtering on Titanium Alloy
4
作者 DENG Wanrong YANG Wei +5 位作者 YU Sen LAN Nan MA Xiqun WANG Liqun GAO Wei CHEN Jian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1586-1594,共9页
Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface com... Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface compositions,and thicknesses of the films were characterized using SEM+EDS;the anti-corrosion,wear resistance and antibacterial properties of the films in simulated seawater were investigated.The experimental results show that all four Cu-(HEA)N films are uniformly dense and contained nanoparticles.The film with Cu doping come into contact with oxygen in the air to form cuprous oxide.The corrosion resistance of the(HEA)N film without Cu doping on titanium alloy is better than the films with Cu doping.The Cu-(HEA)N film with Cu target power of 16 W shows the best wear resistance and antibacterial performance,which is attributed to the fact that Cu can reduce the coefficient of friction and exacerbate corrosion,and the formation of cuprous oxide has antibacterial properties.The findings of this study provide insights for engineering applications of TC4 in the marine field. 展开更多
关键词 titanium alloy high-entropy alloy nitride film magnetron sputtering properties
下载PDF
Tribological Behaviors of Electroless Nickel-Boron Coating on Titanium Alloy Surface
5
作者 Yao Jia Jianping Lai +3 位作者 Jiaxin Yu Huimin Qi Yafeng Zhang Hongtu He 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期309-320,共12页
Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological p... Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological performance of alloys,but it is difficult to efficiently apply to titanium alloys,due to titanium alloy’s strong chemical activity.In this work,the electroless Nickel-Boron(Ni-B)coating was successfully deposited on the surface of titanium alloy(Ti-6AL-4V)via a new pre-treatment process.Then,linearly reciprocating sliding wear tests were performed to evaluate the tribological behaviors of titanium alloy and its electroless Ni-B coatings.It was found that the Ni-B coatings can decrease the wear rate of the titanium alloy from 19.89×10^(−3)mm^(3)to 0.41×10^(−3)mm^(3),which attributes to the much higher hardness of Ni-B coatings.After heat treatment,the hardness of Ni-B coating further increases corresponding to coating crystallization and hard phase formation.However,heat treatment does not improve the tribological performance of Ni-B coating,due to the fact that higher brittleness and more severe oxidative wear exacerbate the damage of heat-treated coatings.Furthermore,the Ni-B coatings heat-treated both in air and nitrogen almost present the same tribological performance.The finding of this work on electroless coating would further extend the practical applications of titanium alloys in the engineering fields. 展开更多
关键词 Electroless coating titanium alloy TRIBOLOGY WEAR Heat treatment NANOINDENTATION
下载PDF
A review on advances of high-throughput experimental technology for titanium alloys
6
作者 Ke-chao ZHOU Xiu-ye YANG +3 位作者 Yi-xin AN Jun-yang HE Bing-feng WANG Xiao-yong ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3425-3451,共27页
Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understan... Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understanding of the microstructure−property relationship results in prolonged research and development(R&D)cycles,hindering the optimization of the performance of Ti alloys.Recently,the advent of high-throughput experimental(HTE)technology has shown promise in facilitating the efficient and demand-driven development of next-generation Ti alloys.This work reviews the latest advancements in HTE technology for Ti alloys.The high-throughput preparation(HTP)techniques commonly used in the fabrication of Ti alloys are addressed,including diffusion multiple,additive manufacturing(AM),vapor deposition and others.The current applications of high-throughput characterization(HTC)techniques in Ti alloys are shown.Finally,the research achievements in HTE technology for Ti alloys are summarized and the challenges faced in their industrial application are discussed. 展开更多
关键词 titanium alloys HIGH-THROUGHPUT microstructure mechanical properties
下载PDF
Hot Deformation Behavior of Ti-6Al-4V-0.5Ni-0.5Nb Titanium Alloy
7
作者 ZHU Guochuan LIU Qiang +6 位作者 SONG Shengyin HUI Songxiao YU Yang YE Wenjun QI Jun TANG Zhengwei XU Penghai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1270-1277,共8页
Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The... Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The isothermal compression experiment results showed that the peak stress of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy decreased with the temperature increasing and the strain rate decreasing.The softening mechanism was dynamic recovery below T_(β)and changed to dynamic recrystallization above T_(β).The arrheniustype relationship was used to calculate the constitutive equation of Ti-6Al-4V-0.5Ni-0.5Nb alloy in two-phase regions.It was found that the apparent activation energies were 427.095 kJ·mol^(-1)in theα+βphase region and 205.451 kJ·mol^(-1)in theβphase region,respectively.On the basis of dynamic materials model,the processing map is generated,which shows that the highest peak efficiency of power dissipation of 56%occurs at about 1050℃/0.01 s^(-1).It can be found in the processing maps that the strain had significant effect on the peak region of power dissipation efficiency of Ti-6Al-4V-0.5Ni-0.5Nb alloy.Furthermore,optimized hot working regions were investigated and validated through microstructure observation.The optimum thermo mechanical process condition for hot working of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was suggested to be in the temperature range of 950-1000℃with a strain rate of 0.01-0.1 s^(-1). 展开更多
关键词 titanium alloy hot deformation processing map dynamic recrystallization
下载PDF
Phase transformation in titanium alloys:A review
8
作者 Chang-chang LIU Yang-huan-zi LI +1 位作者 Ji GU Min SONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3093-3117,共25页
Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases ... Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed. 展开更多
关键词 titanium alloys phase transformation microstructural evolution mechanical properties
下载PDF
A new rhombohedral phase and its 48 variants inβtitanium alloy
9
作者 Xin-nan WANG Ming HAN +2 位作者 Fu-rong ZHANG Guang-ming ZHAO Zhi-shou ZHU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2849-2863,共15页
A new rhombohedral phase(termed R′)in a solution-aging-treated titanium alloy(Ti-4.5Al-6.5Mo-2Cr-2Nb-1V-1Sn-1Zr,wt.%)was identified.Its accurate Bravais lattice parameters were determined by a novel unit cell reconst... A new rhombohedral phase(termed R′)in a solution-aging-treated titanium alloy(Ti-4.5Al-6.5Mo-2Cr-2Nb-1V-1Sn-1Zr,wt.%)was identified.Its accurate Bravais lattice parameters were determined by a novel unit cell reconstruction method based on conventional selected-area electron diffraction(SAED)technique.The orientation relationship between R'phase and BCC phase was revealed.The results show that the R′phase is found to have 48crystallographically equivalent variants,resulting in rather complicated SAED patterns with high-order reflections.A series of in-situ SAED patterns were taken along both low-and high-index zone axes,and all weak and strong reflections arising from the 48 variants were properly explained and directly assigned with self-consistent Miller indices,confirming the presence of the rhombohedral phase.Additionally,some criteria were also proposed for evaluating the indexed results,which together with the Bravais lattice reconstruction method shed light on the microstructure characterization of even unknown phases in other alloys. 展开更多
关键词 titanium alloy rhombohedral phase Bravais lattice reconstruction VARIANT orientation relationship
下载PDF
A Solute Pinning Approach to Solute Drag in Multi-Component Solid Solution Alloys 被引量:1
10
作者 Emmanuel Hersent Knut Marthinsen Erik Nes 《Modeling and Numerical Simulation of Material Science》 2014年第1期8-13,共6页
The Cahn, Lücke and Stüwe theory remains the backbone of more complex analysis dealing with solute drag, however, the mathematical treatment is rather involved. A new approach based on solute pinning the bou... The Cahn, Lücke and Stüwe theory remains the backbone of more complex analysis dealing with solute drag, however, the mathematical treatment is rather involved. A new approach based on solute pinning the boundary has therefore recently been suggested, which has the main advantage of a simpler mathematical treatment. In the present paper this approach has been generalized to take into account the influence of different types of solute atoms in the high solute content/low driving force regime. 展开更多
关键词 Boundary Mobility Solute Drag multi-component alloys Analytical Modelling
下载PDF
Dynamic globularization kinetics during hot working of TA15 titanium alloy with colony microstructure 被引量:20
11
作者 吴成宝 杨合 +1 位作者 樊晓光 孙志超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期1963-1969,共7页
The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitat... The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitatively studied through isothermal compression tests.It is found that the dynamic globularization kinetics and the kinetics rate of TA15 are sensitive to deformation parameters.The dynamic globularized fraction increases with increasing strain,temperature but decreasing strain rate.The variation of globularized fraction with strain approximately follows an Avrami type equation.Using the Avrami type equation,the initiation and completion strains for dynamic globularization of TA15 were predicted to be 0.34-0.59 and 3.40-6.80.The kinetics rate of dynamic globularization increases with strain at first,then decreases.The peak value of kinetics rate,which corresponds to 20%-33% globularization fraction,increases with increasing temperature and decreasing strain rate. 展开更多
关键词 TA15 titanium alloy dynamic globularization KINETICS STRAIN kinetics rate
下载PDF
Design of new biomedical titanium alloy based on d-electron alloy design theory and JMatPro software 被引量:8
12
作者 戴世娟 王煜 +2 位作者 陈锋 余新泉 张友法 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期3027-3032,共6页
A new kind offl biomedical titanium alloy, Ti-35Nb-4Sn-6Mo-9Zr, composed of non-toxic elements Nb, Mo, Zr and Sn with lower elastic modulus and higher strength was designed based on d-electron alloy design theory and ... A new kind offl biomedical titanium alloy, Ti-35Nb-4Sn-6Mo-9Zr, composed of non-toxic elements Nb, Mo, Zr and Sn with lower elastic modulus and higher strength was designed based on d-electron alloy design theory and JMatPro software using orthogonal experiment. The microstructure and basic mechanical properties of designed alloy were investigated. The results show that the alloy is composed of single fl equiaxed grains after solution treatment at 800 ~C. Compared with Ti-6A1-4V, the mechanical properties of the designed alloy are more excellent: E=65 GPa, σb=834 MPa, σ0.2=802 MPa, and σ=11%, which is expected to become a promising new type implanted material. The research approach adopted can reduce the experimental time and cost effectively, and get the ideal experimental results. 展开更多
关键词 titanium alloy d-electron alloy design theory JMatPro software elastic modulus STRENGTH
下载PDF
Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy 被引量:19
13
作者 姚倡锋 武导侠 +3 位作者 靳淇超 黄新春 任军学 张定华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期650-660,共11页
High-speed milling of titanium alloys is widely used in aviation and aerospace industries for its high efficiency and good quality.In order to optimize the machining parameters in high-speed milling TB6 titanium alloy... High-speed milling of titanium alloys is widely used in aviation and aerospace industries for its high efficiency and good quality.In order to optimize the machining parameters in high-speed milling TB6 titanium alloy,experiments of high-speed milling and fatigue were conducted to investigate the effect of parameters on 3D surface topography and fatigue life.Based on the fatigue fracture,the effect mechanism of surface topography on the fatigue crack initiation was proposed.The experiment results show that when the milling speed ranged from 100 m/min to 140 m/min,and the feed per tooth ranged from 0.02 mm/z to 0.06 mm/z,the obtained surface roughness were within the limit(0.8 μm).Fatigue life decreased sharply with the increase of surface equivalent stress concentration factor.The average error of fatigue life between the established model and the experimental results was 6.25%.The fatigue cracks nucleated at the intersection edge of machined surface. 展开更多
关键词 TB6 titanium alloy high-speed milling surface roughness surface topography fatigue life fatigue fracture
下载PDF
Effects of nitrogen flux on microstructure and tribological properties of in-situ TiN coatings deposited on TC11 titanium alloy by electrospark deposition 被引量:12
14
作者 洪翔 谭业发 +2 位作者 王小龙 谭华 徐婷 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3329-3338,共10页
In order to improve the tribological properties of titanium alloys,the in-situ TiN coatings were prepared by electrospark deposition(ESD) on the surface of TC11 titanium alloy.The effects of nitrogen flux on the mic... In order to improve the tribological properties of titanium alloys,the in-situ TiN coatings were prepared by electrospark deposition(ESD) on the surface of TC11 titanium alloy.The effects of nitrogen flux on the microstructure and tribological properties of TiN coatings were investigated.The results show that the coating is relative thin when the nitrogen flux is small and mainly consists of Ti2N,α-Ti,Ti O and TiN phases,and the metastable phase of Ti2N is developed due to the rapid solidification of ESD.While in excessive nitrogen flux condition,many micro-cracks and holes might be generated in the coating.In moderate nitrogen flux,the coating is mainly composed of TiN phase,and is dense and uniform(50-55 μm).The average hardness is HV0.2 1165.2,which is 3.4 times that of the TC11 substrate.The TiN coatings prepared in moderate nitrogen flux perform the best wear resistance.The wear loss of the coating is 0.4 mg,which is 2/9 that of the TC11 substrate.The main wear mechanisms of the coatings are micro-cutting wear accompanied by multi-plastic deformation wear. 展开更多
关键词 titanium alloy TiN coating electrospark deposition friction and wear
下载PDF
Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field 被引量:12
15
作者 许鑫 董利民 +2 位作者 巴宏波 张志强 杨锐 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第11期2874-2882,共9页
The hot deformation behavior of beta C titanium alloy in β phase field was investigated by isothermal compression testson a Gleeble?3800 thermomechanical simulator. The constitutive equation describing the hot defor... The hot deformation behavior of beta C titanium alloy in β phase field was investigated by isothermal compression testson a Gleeble?3800 thermomechanical simulator. The constitutive equation describing the hot deformation behavior was obtained anda processing map was established at the true strain of 0.7. The microstructure was characterized by optical microscopy (OM),scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) technique. The results show that the flow stressincreases with increasing strain rates, and decreases with increasing experimental temperatures. The calculated apparent activationenergy (167 kJ/mol) is close to that of self-diffusion in β titanium. The processing map and microstructure observation exhibit adynamic recrystallization domain in the temperature range of 900-1000 ℃ and strain rate range of 0.1-1 s^-1. An instability regionexists when the strain rate is higher than 1.7 s^-1. The microstructure of beta C titanium alloy can be optimized by proper heattreatments after the deformation in the dynamic recrystallization domain. 展开更多
关键词 titanium alloy hot deformation dynamic recrystallization processing map
下载PDF
Microstructure and mechanical properties of TC21 titanium alloy after heat treatment 被引量:13
16
作者 石志峰 郭鸿镇 +1 位作者 韩锦阳 姚泽坤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2882-2889,共8页
Microstructure evolutions during different heat treatments and influence of microstmcture on mechanical properties of TC21 titanium alloy were investigated. The results indicate that the excellent mechanical propertie... Microstructure evolutions during different heat treatments and influence of microstmcture on mechanical properties of TC21 titanium alloy were investigated. The results indicate that the excellent mechanical properties can be obtained by adopting air cooling after forging followed by heat treatment of (900℃, 1 h, AC)+(590 ℃, 4 h, AC). Deformation in single β field produces pan-like prior fl grains, while annealing in single fl field produces equiaxed prior fl grains. Cooling rate after forging or annealing in single fl field and the subsequent annealing on the top of α+β field determine the content and morphology of coarse a plates. During aging or the third annealing, fine secondary a plates precipitate. Both ultimate strength and yield strength decrease with the content increase of coarse a plates. Decreasing effective slip length and high crack propagation resistance increase the plasticity. The crisscross coarse a plates with large thickness are helpful to enhance the fracture toughness. 展开更多
关键词 TC21 titanium alloy heat treatment MICROSTRUCTURE mechanical properties
下载PDF
Microstructure and mechanical properties of TC21 titanium alloy by near-isothermal forging 被引量:14
17
作者 石志峰 郭鸿镇 +2 位作者 刘瑞 王晓晨 姚泽坤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期72-79,共8页
Microstructure and tensile properties of TC21 titanium alloy after near-isothermal forging with different parameters plus solution treatment and aging were investigated. It is found that the residual β matrix, which ... Microstructure and tensile properties of TC21 titanium alloy after near-isothermal forging with different parameters plus solution treatment and aging were investigated. It is found that the residual β matrix, which was strengthened by fine secondary α platelets forming during aging, exists in all the samples; while primary equiaxed α phase, bent lamellar α phase and α plates are simultaneously or individually present in one sample. The strength of alloy increases proportionally with increasing the content of residual β matrix, which is the result of increasing α/β interphase boundary. The plasticity of alloy has a downward trend as the content of residual β matrix increases. This attributes to the increase of fine secondary α platelets, which are cut by dislocations during the deformation. Additionally, coarse α plates with long axis parallel to the maximum resolved shear stress(MRSS) also reduce the plasticity of TC21 alloy. 展开更多
关键词 TC21 titanium alloy near-isothermal forging MICROSTRUCTURE α phase morphology residual β matrix tensile properties
下载PDF
Interfacial structure and mechanical properties of hot-roll bonded joints between titanium alloy and stainless steel using niobium interlayer 被引量:10
18
作者 赵东升 闫久春 +1 位作者 刘玉君 纪卓尚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2839-2844,共6页
The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plastici... The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plasticity of bonded joint is improved significantly. When the bonding temperature is 800 °C or 900 °C, there is not intermetallic layer at the interface between stainless steel and niobium. When the bonding temperature is 1000 °C or 1050 °C, Fe-Nb intermetallic layer forms at the interface. When the bonding temperature is 1050 °C, cracking occurs between stainless steel and intermetallic layer. The maximum strength of -417.5 MPa is obtained at the bonding temperature of 900 °C, the reduction of 25% and the rolling speed of 38 mm/s, and the tensile specimen fractures in the niobium interlayer with plastic fracture characteristics. When the hot-roll bonded transition joints were TIG welded with titanium alloy and stainless steel respectively, the tensile strength of the transition joints after TIG welding is -410.3 MPa, and the specimen fractures in the niobium interlayer. 展开更多
关键词 hot roll bonding titanium alloy stainless steel NIOBIUM
下载PDF
Microstructure characterization and mechanical properties of TC4-DT titanium alloy after thermomechanical treatment 被引量:13
19
作者 彭小娜 郭鸿镇 +2 位作者 石志峰 秦春 赵张龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期682-689,共8页
Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated.... Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated. Results showed that thermomechanical treatments had a significant influence on the microstructure parameters and higher annealing and aging temperature and lower cooling rate led to the decrease of the volume fraction of primaryαand the size of prior-βand the increase of the width of grain boundary αand secondary α. The highest strength was obtained by solution treatment and aging due to a large amount of transformedβand finer grain boundaryαand secondaryαat the expense of slight decrease of elongation and the ultimate strength, yield strength, elongation, reduction of area were 1100 MPa, 1030 MPa, 13%and 53%separately. A good combination of strength and ductility has been obtained by duplex annealing with the above values 940 MPa, 887.5 MPa, 15%and 51%respectively. Analysis between microstructure parameters and tensile properties showed that with the volume fraction of transformedβphase and the prior-βgrain size increasing, the ultimate strength, yield strength and reduction of area increased, but the elongation decreased. While the width of grain boundary α and secondary α showed a contrary effect on the tensile properties. Elimination of grain boundaryαas well as small prior-βgrain size can also improve ductility. 展开更多
关键词 TC4-DT titanium alloy thermomechanical treatment microstructures tensile properties
下载PDF
Bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy 被引量:11
20
作者 李宏 张超 +1 位作者 刘宏彬 李淼泉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期80-87,共8页
The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount ... The bonding interface characteristic and shear strength of diffusion bonded Ti-17 titanium alloy at different bonding time were investigated. The results show that the average size of voids decreases while the amount of voids decreases after increasing to the maximum value with the increasing bonding time. The irregular void with a scraggly edge tends to an ellipse void with smooth surface and then changes to a tiny void with round shape. The grains across bonding interface occur at bonding time of 60 min. The shear strength of bond increases with increasing bonding time, and the highest shear strength of bond is 887.4 MPa at 60 min. The contribution of plastic deformation on the void closure and the increase of shear strength is significant even though the action time of plastic deformation is short. 展开更多
关键词 Ti-17 titanium alloy diffusion bonding bonding interface VOID shear strength
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部