A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is eq...A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1).展开更多
In this paper we investigated the stability of konjac glucomnnan(KGM) chain hydrogen networks based on the quantum spin model. Dissipative particle dynamics method was applied in the structure simulation of KGM. The...In this paper we investigated the stability of konjac glucomnnan(KGM) chain hydrogen networks based on the quantum spin model. Dissipative particle dynamics method was applied in the structure simulation of KGM. The results reveled that acetyl residues of KGM were bonded with water molecules in aqueous solutions. Increasing the hydrogen bond formation decreases the energy in acetyl system. The expect-valuation of the thermal state with respect to the Hamiltonian is negative. Hence, the total energy of konjac glucomnnan chain with the acetyl groups decreases, which indicates the increasing stability of konjac glucomnnan chain. Our approach could provide a new insight into the investigation on the stability of konjac glucomnnan chain.展开更多
As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big probl...As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big problem: reserving energy of the node frequently presents the incapacity of directly communicating with the base station, at the same time capacity of data acquisition and transmission as normal nodes. If these nodes were selected as LEADER nodes, that will accelerate the death process and unevenness of energy consumption distribution among nodes.This paper proposed a chain routing algorithm based ontraffic prediction model (CRTP).The novel algorithmdesigns a threshold judgment method through introducing the traffic prediction model in the process of election of LEADER node. The process can be dynamically adjusted according to the flow forecasting. Therefore, this algorithm lets the energy consumption tend-ing to keep at same level. Simulation results show that CRTP has superior performance over EEPB in terms of balanced network energy consumption and the prolonged network life.展开更多
The productivity of an organization is very much affected by non-value adding activity like logistics, which moves the resources from suppliers to factory, raw materials/semi-finished items within the factory and fini...The productivity of an organization is very much affected by non-value adding activity like logistics, which moves the resources from suppliers to factory, raw materials/semi-finished items within the factory and finished goods from factory to customers via a designated distribution channel called as forward logistics. In some cases, parts of the products such as automobiles, computers, cameras, mobile phones, washing machines, refrigerators, garments, footwear and empty glass bottles of beverages, etc. will be brought back to the factories as a product recovery strategy through reverse logistics network which is integrated in a sustainable closed loop supply chain network. So, it is highly essential to optimize the movement of the items in the reverse logistics network. This paper gives a comprehensive review of literature of the design of networks for the reverse logistics as well as for the reverse logistics coupled with forward logistics. The contributions of the researchers are classified into nine categories based on the methods used to design the logistics network.展开更多
This paper presents four different hybrid genetic algorithms for network design problem in closed loop supply chain. They are compared using a complete factorial experiment with two factors, viz. problem size and algo...This paper presents four different hybrid genetic algorithms for network design problem in closed loop supply chain. They are compared using a complete factorial experiment with two factors, viz. problem size and algorithm. Based on the significance of the factor “algorithm”, the best algorithm is identified using Duncan’s multiple range test. Then it is compared with a mathematical model in terms of total cost. It is found that the best hybrid genetic algorithm identified gives results on par with the mathematical model in statistical terms. So, the best algorithm out of four algorithm proposed in this paper is proved to be superior to all other algorithms for all sizes of problems and its performance is equal to that of the mathematical model for small size and medium size problems.展开更多
One of the main characteristics of Ad hoc networks is node mobility, which results in constantly changing in network topologies. Consequently, the ability to forecast the future status of mobility nodes plays a key ro...One of the main characteristics of Ad hoc networks is node mobility, which results in constantly changing in network topologies. Consequently, the ability to forecast the future status of mobility nodes plays a key role in QOS routing. We propose a random mobility model based on discretetime Markov chain, called ODM. ODM provides a mathematical framework for calculating some parameters to show the future status of mobility nodes, for instance, the state transition probability matrix of nodes, the probability that an edge is valid, the average number of valid-edges and the probability of a request packet found a valid route. Furthermore, ODM can account for obstacle environment. The state transition probability matrix of nodes can quantify the impact of obstacles. Several theorems are given and proved by using the ODM. Simulation results show that the calculated value can forecast the future status of mobility nodes.展开更多
Advanced Persistent Threat(APT)is now the most common network assault.However,the existing threat analysis models cannot simultaneously predict the macro-development trend and micro-propagation path of APT attacks.The...Advanced Persistent Threat(APT)is now the most common network assault.However,the existing threat analysis models cannot simultaneously predict the macro-development trend and micro-propagation path of APT attacks.They cannot provide rapid and accurate early warning and decision responses to the present system state because they are inadequate at deducing the risk evolution rules of network threats.To address the above problems,firstly,this paper constructs the multi-source threat element analysis ontology(MTEAO)by integrating multi-source network security knowledge bases.Subsequently,based on MTEAO,we propose a two-layer threat prediction model(TL-TPM)that combines the knowledge graph and the event graph.The macro-layer of TL-TPM is based on the knowledge graph to derive the propagation path of threats among devices and to correlate threat elements for threat warning and decision-making;The micro-layer ingeniously maps the attack graph onto the event graph and derives the evolution path of attack techniques based on the event graph to improve the explainability of the evolution of threat events.The experiment’s results demonstrate that TL-TPM can completely depict the threat development trend,and the early warning results are more precise and scientific,offering knowledge and guidance for active defense.展开更多
基金Project(70572090) supported by the National Natural Science Foundation of China
文摘A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1).
基金supported by the Natural Science Foundation of China(31271837 and 31471704)
文摘In this paper we investigated the stability of konjac glucomnnan(KGM) chain hydrogen networks based on the quantum spin model. Dissipative particle dynamics method was applied in the structure simulation of KGM. The results reveled that acetyl residues of KGM were bonded with water molecules in aqueous solutions. Increasing the hydrogen bond formation decreases the energy in acetyl system. The expect-valuation of the thermal state with respect to the Hamiltonian is negative. Hence, the total energy of konjac glucomnnan chain with the acetyl groups decreases, which indicates the increasing stability of konjac glucomnnan chain. Our approach could provide a new insight into the investigation on the stability of konjac glucomnnan chain.
文摘As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big problem: reserving energy of the node frequently presents the incapacity of directly communicating with the base station, at the same time capacity of data acquisition and transmission as normal nodes. If these nodes were selected as LEADER nodes, that will accelerate the death process and unevenness of energy consumption distribution among nodes.This paper proposed a chain routing algorithm based ontraffic prediction model (CRTP).The novel algorithmdesigns a threshold judgment method through introducing the traffic prediction model in the process of election of LEADER node. The process can be dynamically adjusted according to the flow forecasting. Therefore, this algorithm lets the energy consumption tend-ing to keep at same level. Simulation results show that CRTP has superior performance over EEPB in terms of balanced network energy consumption and the prolonged network life.
文摘The productivity of an organization is very much affected by non-value adding activity like logistics, which moves the resources from suppliers to factory, raw materials/semi-finished items within the factory and finished goods from factory to customers via a designated distribution channel called as forward logistics. In some cases, parts of the products such as automobiles, computers, cameras, mobile phones, washing machines, refrigerators, garments, footwear and empty glass bottles of beverages, etc. will be brought back to the factories as a product recovery strategy through reverse logistics network which is integrated in a sustainable closed loop supply chain network. So, it is highly essential to optimize the movement of the items in the reverse logistics network. This paper gives a comprehensive review of literature of the design of networks for the reverse logistics as well as for the reverse logistics coupled with forward logistics. The contributions of the researchers are classified into nine categories based on the methods used to design the logistics network.
文摘This paper presents four different hybrid genetic algorithms for network design problem in closed loop supply chain. They are compared using a complete factorial experiment with two factors, viz. problem size and algorithm. Based on the significance of the factor “algorithm”, the best algorithm is identified using Duncan’s multiple range test. Then it is compared with a mathematical model in terms of total cost. It is found that the best hybrid genetic algorithm identified gives results on par with the mathematical model in statistical terms. So, the best algorithm out of four algorithm proposed in this paper is proved to be superior to all other algorithms for all sizes of problems and its performance is equal to that of the mathematical model for small size and medium size problems.
基金Acknowledgements This work is supported by the Postdoctoral Science Foundation of China under Grant No.20080431142.
文摘One of the main characteristics of Ad hoc networks is node mobility, which results in constantly changing in network topologies. Consequently, the ability to forecast the future status of mobility nodes plays a key role in QOS routing. We propose a random mobility model based on discretetime Markov chain, called ODM. ODM provides a mathematical framework for calculating some parameters to show the future status of mobility nodes, for instance, the state transition probability matrix of nodes, the probability that an edge is valid, the average number of valid-edges and the probability of a request packet found a valid route. Furthermore, ODM can account for obstacle environment. The state transition probability matrix of nodes can quantify the impact of obstacles. Several theorems are given and proved by using the ODM. Simulation results show that the calculated value can forecast the future status of mobility nodes.
文摘Advanced Persistent Threat(APT)is now the most common network assault.However,the existing threat analysis models cannot simultaneously predict the macro-development trend and micro-propagation path of APT attacks.They cannot provide rapid and accurate early warning and decision responses to the present system state because they are inadequate at deducing the risk evolution rules of network threats.To address the above problems,firstly,this paper constructs the multi-source threat element analysis ontology(MTEAO)by integrating multi-source network security knowledge bases.Subsequently,based on MTEAO,we propose a two-layer threat prediction model(TL-TPM)that combines the knowledge graph and the event graph.The macro-layer of TL-TPM is based on the knowledge graph to derive the propagation path of threats among devices and to correlate threat elements for threat warning and decision-making;The micro-layer ingeniously maps the attack graph onto the event graph and derives the evolution path of attack techniques based on the event graph to improve the explainability of the evolution of threat events.The experiment’s results demonstrate that TL-TPM can completely depict the threat development trend,and the early warning results are more precise and scientific,offering knowledge and guidance for active defense.