The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchange...The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.展开更多
The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed ...The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.展开更多
An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system w...An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system was established. The periodically autoregressive models (PARM) based on genetic algorithms (GA) were used to predict the next day’s cold load. The improved genetic algorithms (IGA) with stochastic real number coding were used to finish the optimum energy saving scheduling of the system. The simulation results for the building of the Liangmahe Plaza show that the proposed strategy can save energy up to about 24 5%.展开更多
In this paper,based on the generalized heat transfer law,an air conditioning system is analyzed with the entropy generation minimization and the entransy theory.Taking the coefficient of performance(denoted as COP) ...In this paper,based on the generalized heat transfer law,an air conditioning system is analyzed with the entropy generation minimization and the entransy theory.Taking the coefficient of performance(denoted as COP) and heat flow rate Qout which is released into the room as the optimization objectives,we discuss the applicabilities of the entropy generation minimization and entransy theory to the optimizations.Five numerical cases are presented.Combining the numerical results and theoretical analyses,we can conclude that the optimization applicabilities of the two theories are conditional.If Qout is the optimization objective,larger entransy increase rate always leads to larger Qout,while smaller entropy generation rate does not.If we take COP as the optimization objective,neither the entropy generation minimization nor the concept of entransy increase is always applicable.Furthermore,we find that the concept of entransy dissipation is not applicable for the discussed cases.展开更多
An aircraft cabin is a narrow,closed-space environment.To keep the air quality in cabin healthy for passengers,especially during an epidemic such as SARS-CoV-2(or 2019-nCoV)in 2020,a novel aircraft air conditioning sy...An aircraft cabin is a narrow,closed-space environment.To keep the air quality in cabin healthy for passengers,especially during an epidemic such as SARS-CoV-2(or 2019-nCoV)in 2020,a novel aircraft air conditioning system,called the ultra-high-temperature instantaneous sterilization air conditioning system(UHTACS),is proposed.Based on the proposed system,a simulation of the UHT-ACS is analysed in various flight states.In the UHT-ACS,the mixing air temperature of return and bleed air can reach temperature up to 148.8°C,which is high enough to kill bacilli and viruses in 2一8 s.The supply air temperature of the UHT-ACS in a mixing cavity is about 12 C in cooling mode both on the ground and in the air.The supply air temperature is about 42 C in heating mode.Compared with the air conditioning systems(ACS)of traditional aircraft the supply air temperatures of the UHT-ACS in the mixing cavity are in good agreement with those of a traditional ACS with 60%fresh air and 40%return air.Furthermore the air temperature at the turbine outlet of the UHT-ACS is higher than that of a traditional ACS which will help to reduce the risk of icing at the outlet.Therefore the UHT-ACS can operate normally in various flight states.展开更多
As an environmentally harmless and feasible alternate refrigerant, CO 2 has attracted worldwide attention, especially in the area of automobile air conditioning (AAC). The thermal property of CO 2 and its trans cr...As an environmentally harmless and feasible alternate refrigerant, CO 2 has attracted worldwide attention, especially in the area of automobile air conditioning (AAC). The thermal property of CO 2 and its trans critical refrigeration cycle is very different from that of the traditional CFC or HCFC system. The detailed process of CO 2 system thermal cycle design and optimization is described in this paper. System prototype and performance test bench were developed to analyze the performance of the CO 2 AAC system.展开更多
Different cities have different climate conditions and outdoor temperature and humidity, so the scheme of an environment control in subway should be analyzed by considering objective conditions, project cost and opera...Different cities have different climate conditions and outdoor temperature and humidity, so the scheme of an environment control in subway should be analyzed by considering objective conditions, project cost and operating status. In this paper, a physical and mathematical model is built according to the design of Shenyang subway (line 1), the boundary conditions of the model are defined by the design and experiments, the numerical analysis of ventilating scheme and air conditioning scheme is introduced individually, and the temperature field and air flow field of the two schemes are compared, so that the feasibility of using a ventilating scheme in subway of northeast cities is discussed. Considering comfort and economy, it can be concluded that mechanical ventilation is feasible in subway of northeast cities because the air temperature there is not very high in summer.展开更多
The two-phase thermosyphon loop is an efficient solution for space cooling. This paper presents the simulation results of numerical studies on the heat transfer and thermal performance of a two-phase thermosiphon loop...The two-phase thermosyphon loop is an efficient solution for space cooling. This paper presents the simulation results of numerical studies on the heat transfer and thermal performance of a two-phase thermosiphon loop for passive air-conditioning of a house. The fluid considered in this study is methanol, which is compatible with copper and is environmentally friendly. These numerical results show that the temperature at the evaporator wall drops from 23<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C to 13<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and increases at the condenser. The solar flux density has a strong influence on the condenser temperature. The mass flow rates and masses at the evaporator and condenser increase with temperature. The variation of evaporating and condensing temperature affects the performance of the system. For a constant evaporating and condensing temperature of 2<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and 29<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, the COP is 0.77 and 0.84 respectively. With these results, the use of the two-phase thermosyphon loop in air conditioning is possible to obtain a thermal comfort of the occupants acceptable by the standards but with a large exchange surface of the evaporator.展开更多
A model free intelligent muhivariable fuzzy controller (MFC) designed for modulating the vapor compression cycles in a residential inverter-driven air conditioning is proposed. The novel controller combines a tradit...A model free intelligent muhivariable fuzzy controller (MFC) designed for modulating the vapor compression cycles in a residential inverter-driven air conditioning is proposed. The novel controller combines a traditional fuzzy controller (TFC) and an additional coupling fuzzy controller, the coupling fuzzy controller is introduced to compensate for the unknown cross-coupling effects of this muhivariable system. In order to evaluate the control performance of the MFC, it is digitally implemented in terms of regulating the desired evaporating temperature and superheat. The experimental results show the effectiveness of the MFC for improvement of system performance and energy efficiency.展开更多
Screening similar historical fault-free candidate data would greatly affect the effectiveness of fault detection results based on principal component analysis(PCA).In order to find out the candidate data,this study co...Screening similar historical fault-free candidate data would greatly affect the effectiveness of fault detection results based on principal component analysis(PCA).In order to find out the candidate data,this study compares unweighted and weighted similarity factors(SFs),which measure the similarity of the principal component subspace corresponding to the first k main components of two datasets.The fault detection employs the principal component subspace corresponding to the current measured data and the historical fault-free data.From the historical fault-free database,the load parameters are employed to locate the candidate data similar to the current operating data.Fault detection method for air conditioning systems is based on principal component.The results show that the weighted principal component SF can improve the effects of the fault-free detection and the fault detection.Compared with the unweighted SF,the average fault-free detection rate of the weighted SF is 17.33%higher than that of the unweighted,and the average fault detection rate is 7.51%higher than unweighted.展开更多
Air conditioning (AC) system is the one with asynchronous and uncertain nature. In this paper, the fuzzy discrete event system (FDES) is introduced to the research of AC energy-saving control. A fuzzy automaton modeli...Air conditioning (AC) system is the one with asynchronous and uncertain nature. In this paper, the fuzzy discrete event system (FDES) is introduced to the research of AC energy-saving control. A fuzzy automaton modeling is given for AC energy-saving control and effectiveness optimization is made. To facilitate the implement of the control and energy saving, priorities have been assigned to the major control steps based on logical reasoning. Forward-looking tree modeling based on FDES has been simplified to help further optimization, and a simple and concrete example has been put forward illustrating energy-saving control in AC system.展开更多
Principal component analysis(PCA)has been already employed for fault detection of air conditioning systems.The sliding window,which is composed of some parameters satisfying with thermal load balance,can select the ta...Principal component analysis(PCA)has been already employed for fault detection of air conditioning systems.The sliding window,which is composed of some parameters satisfying with thermal load balance,can select the target historical fault-free reference data as the template which is similar to the current snapshot data.The size of sliding window is usually given according to empirical values,while the influence of different sizes of sliding windows on fault detection of an air conditioning system is not further studied.The air conditioning system is a dynamic response process,and the operating parameters change with the change of the load,while the response of the controller is delayed.In a variable air volume(VAV)air conditioning system controlled by the total air volume method,in order to ensure sufficient response time,30 data points are selected first,and then their multiples are selected.Three different sizes of sliding windows with 30,60 and 90 data points are applied to compare the fault detection effect in this paper.The results show that if the size of the sliding window is 60 data points,the average fault-free detection ratio is 80.17%in fault-free testing days,and the average fault detection ratio is 88.47%in faulty testing days.展开更多
It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, t...It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, the air conditioning system is analysed and an innovative way is suggested. We use natural low temperature of shallow sub surface (1 - 3 m) of the earth—geothermal cooling system. It is known that majority of the households and the apartment complexes in India have two tanks for water storage. One is the underground water sump and the other is the overhead water tank. In our study, we use these two water storage systems for space cooling during summer and also for heating during winter. The main aim of our paper is air-conditioning of the space in an economic way to save electricity. It is based on a simple idea of transferring the low temperature from underground water sump to the room in the house using water as a mode of transport. Since India is a tropical country located at low latitude, most of the year, the air temperature is high and demands space cooling. However, for a couple of months during severe winter months (Dec.-Jan.) at Ahmedabad, heating of the space is required. For heating the space, we suggest to use the well-known solar water heater. Effective use of heat exchanger is shown through computation, modelling schemes and lab experiment. We recommend geothermal cooling for 10 months in a year and solar hot water system during 2 months of winter. It is observed that the ambient air temperature of 35°C - 40°C in the room can be brought down to 26°C without much consumption of electricity. In a similar manner, the room temperature at night (13°C) during winter in Ahmedabad can be increased to 27°C through circulation of water from solar water heater in the heat exchanger.展开更多
To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three...To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.展开更多
The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analy...The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analyzed.The test shows that making full use of the evaporative cooling "free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the energy efficiency ratio of the Unit(EER)is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the new wind ratio up to 50 percent,more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent.展开更多
This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of resource loss and an ...This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of resource loss and an emission entropy from the condense heat recovery system in the air conditioning refrigerating machine were introduced.For the evaluation of the entropies,we developed a new algorithm for the parameter identification,called the composite influence coefficient,based on the Least Squares Support Vector Machine method.By simulation,the numerical experiments shows that the Least Squares Support Vector Machine method is one of the powerful methods for the parameter identification to compute the damage entropy of the condense heat,with the largest training error being-0.025(the relative error being-3.56%),and the biggest test error being 0.015(the relative error being 2.5%).展开更多
In order to investigate the bacteria and fungi aerosol characteristic distribution in HVAC-system and its components at Shaanxi History Museum.Measurements were performed to probe the bacteria and fungi aerosol in HVA...In order to investigate the bacteria and fungi aerosol characteristic distribution in HVAC-system and its components at Shaanxi History Museum.Measurements were performed to probe the bacteria and fungi aerosol in HVAC systems,located at Xi'an city,China.The results showed that there was fungi growth inside the ventilation ducts,fungi contamination was worse than bacteria,and both of them were distributed into occupied space with the air supply ducts.The dominating genera of fungi was found to be Penicillium spp.and Aspergillus spp.,which was respectively 46.1% and 20.7% in settling fungi,and the dominating genera of fungi in dust were Cladosporium spp.and Penicillium spp.,which was 41.8% and 30.1% respectively.It suggests that available measures to improve and control the performance of HVAC-systems such as the maintenance,management and cleaning should be taken to prevent this pollution and to develop strategies to keep this pollution away.展开更多
This paper presents a method to acquire runtime distribution ratio of building air conditioning system under part load condition (part load coefficient of system) through practical energy consumption data. By utilizin...This paper presents a method to acquire runtime distribution ratio of building air conditioning system under part load condition (part load coefficient of system) through practical energy consumption data. By utilizing monthly energy consumption data of the entire year as the analysis object,this paper identifies data distribution,verifies distribution characteristics and analyzes distribution probability density for the issue of running time distribution ratio of air conditioning system in part load zones in the whole operation period,thus providing a basic calculation basis for an overall analysis of energy efficiency of air conditioning system. In view of the general survey of public building energy consumption carried by the government of Chongqing,this paper takes the governmental office building as an example,the part load ratio coefficient corresponding to practical running of air conditioning system of governmental office building in Chongqing is obtained by utilizing the above probability analysis and the solving method of probability density function. By utilizing the ratio coefficient obtained using this method,the part load coefficient with any running ratio of air conditioning system can be obtained according to the requirement of analysis,which can be used in any load ratio for analyzing running energy efficiency of air conditioning system.展开更多
A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. ...A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.展开更多
The operating theory of an evaporative condenser was expatiated.The difference between an evaporative condensing refrigeration system and a general refrigeration system was analyzed.Compared with the air-cooled and th...The operating theory of an evaporative condenser was expatiated.The difference between an evaporative condensing refrigeration system and a general refrigeration system was analyzed.Compared with the air-cooled and the water-cooled,the virtues of energy-conservation and water-conservation of evaporative condensers were analyzed.Some questions existing in the application of evaporative condensers were pointed out,the corresponding solving methods were analyzed accordingly,and the development trend of evaporative condensing technique in mechanical refrigeration system field and the applied foreground of evaporative condensers in comfortable air conditioning were prospected.展开更多
文摘The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.
文摘The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.
文摘An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system was established. The periodically autoregressive models (PARM) based on genetic algorithms (GA) were used to predict the next day’s cold load. The improved genetic algorithms (IGA) with stochastic real number coding were used to finish the optimum energy saving scheduling of the system. The simulation results for the building of the Liangmahe Plaza show that the proposed strategy can save energy up to about 24 5%.
基金Project supported by the Youth Programs of Chongqing Three Gorges University,China(Grant No.13QN18)
文摘In this paper,based on the generalized heat transfer law,an air conditioning system is analyzed with the entropy generation minimization and the entransy theory.Taking the coefficient of performance(denoted as COP) and heat flow rate Qout which is released into the room as the optimization objectives,we discuss the applicabilities of the entropy generation minimization and entransy theory to the optimizations.Five numerical cases are presented.Combining the numerical results and theoretical analyses,we can conclude that the optimization applicabilities of the two theories are conditional.If Qout is the optimization objective,larger entransy increase rate always leads to larger Qout,while smaller entropy generation rate does not.If we take COP as the optimization objective,neither the entropy generation minimization nor the concept of entransy increase is always applicable.Furthermore,we find that the concept of entransy dissipation is not applicable for the discussed cases.
基金the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and the Foundation of Jiangsu Postdoctoral(No.2019K126)。
文摘An aircraft cabin is a narrow,closed-space environment.To keep the air quality in cabin healthy for passengers,especially during an epidemic such as SARS-CoV-2(or 2019-nCoV)in 2020,a novel aircraft air conditioning system,called the ultra-high-temperature instantaneous sterilization air conditioning system(UHTACS),is proposed.Based on the proposed system,a simulation of the UHT-ACS is analysed in various flight states.In the UHT-ACS,the mixing air temperature of return and bleed air can reach temperature up to 148.8°C,which is high enough to kill bacilli and viruses in 2一8 s.The supply air temperature of the UHT-ACS in a mixing cavity is about 12 C in cooling mode both on the ground and in the air.The supply air temperature is about 42 C in heating mode.Compared with the air conditioning systems(ACS)of traditional aircraft the supply air temperatures of the UHT-ACS in the mixing cavity are in good agreement with those of a traditional ACS with 60%fresh air and 40%return air.Furthermore the air temperature at the turbine outlet of the UHT-ACS is higher than that of a traditional ACS which will help to reduce the risk of icing at the outlet.Therefore the UHT-ACS can operate normally in various flight states.
文摘As an environmentally harmless and feasible alternate refrigerant, CO 2 has attracted worldwide attention, especially in the area of automobile air conditioning (AAC). The thermal property of CO 2 and its trans critical refrigeration cycle is very different from that of the traditional CFC or HCFC system. The detailed process of CO 2 system thermal cycle design and optimization is described in this paper. System prototype and performance test bench were developed to analyze the performance of the CO 2 AAC system.
文摘Different cities have different climate conditions and outdoor temperature and humidity, so the scheme of an environment control in subway should be analyzed by considering objective conditions, project cost and operating status. In this paper, a physical and mathematical model is built according to the design of Shenyang subway (line 1), the boundary conditions of the model are defined by the design and experiments, the numerical analysis of ventilating scheme and air conditioning scheme is introduced individually, and the temperature field and air flow field of the two schemes are compared, so that the feasibility of using a ventilating scheme in subway of northeast cities is discussed. Considering comfort and economy, it can be concluded that mechanical ventilation is feasible in subway of northeast cities because the air temperature there is not very high in summer.
文摘The two-phase thermosyphon loop is an efficient solution for space cooling. This paper presents the simulation results of numerical studies on the heat transfer and thermal performance of a two-phase thermosiphon loop for passive air-conditioning of a house. The fluid considered in this study is methanol, which is compatible with copper and is environmentally friendly. These numerical results show that the temperature at the evaporator wall drops from 23<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C to 13<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and increases at the condenser. The solar flux density has a strong influence on the condenser temperature. The mass flow rates and masses at the evaporator and condenser increase with temperature. The variation of evaporating and condensing temperature affects the performance of the system. For a constant evaporating and condensing temperature of 2<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and 29<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, the COP is 0.77 and 0.84 respectively. With these results, the use of the two-phase thermosyphon loop in air conditioning is possible to obtain a thermal comfort of the occupants acceptable by the standards but with a large exchange surface of the evaporator.
基金This work is supported by the National High Technology Research and Development Program of China (863 Programs, GrantNo. 2007AA05Z224)Knowledge Innovation Project of Chinese Academy of Sciences(Grant No.KGCX2-YW-345)Zhejiang Scientific and Technological Project(Grant No.2009C3113004)
文摘A model free intelligent muhivariable fuzzy controller (MFC) designed for modulating the vapor compression cycles in a residential inverter-driven air conditioning is proposed. The novel controller combines a traditional fuzzy controller (TFC) and an additional coupling fuzzy controller, the coupling fuzzy controller is introduced to compensate for the unknown cross-coupling effects of this muhivariable system. In order to evaluate the control performance of the MFC, it is digitally implemented in terms of regulating the desired evaporating temperature and superheat. The experimental results show the effectiveness of the MFC for improvement of system performance and energy efficiency.
基金Research Project of China Ship Development and Design Center。
文摘Screening similar historical fault-free candidate data would greatly affect the effectiveness of fault detection results based on principal component analysis(PCA).In order to find out the candidate data,this study compares unweighted and weighted similarity factors(SFs),which measure the similarity of the principal component subspace corresponding to the first k main components of two datasets.The fault detection employs the principal component subspace corresponding to the current measured data and the historical fault-free data.From the historical fault-free database,the load parameters are employed to locate the candidate data similar to the current operating data.Fault detection method for air conditioning systems is based on principal component.The results show that the weighted principal component SF can improve the effects of the fault-free detection and the fault detection.Compared with the unweighted SF,the average fault-free detection rate of the weighted SF is 17.33%higher than that of the unweighted,and the average fault detection rate is 7.51%higher than unweighted.
基金PhD Programs Foundation of Ministry of Education of China( No.20060255006)Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China (No.706024)
文摘Air conditioning (AC) system is the one with asynchronous and uncertain nature. In this paper, the fuzzy discrete event system (FDES) is introduced to the research of AC energy-saving control. A fuzzy automaton modeling is given for AC energy-saving control and effectiveness optimization is made. To facilitate the implement of the control and energy saving, priorities have been assigned to the major control steps based on logical reasoning. Forward-looking tree modeling based on FDES has been simplified to help further optimization, and a simple and concrete example has been put forward illustrating energy-saving control in AC system.
基金Fundamental Research Funds for the Central Universities of Ministry of Education of China。
文摘Principal component analysis(PCA)has been already employed for fault detection of air conditioning systems.The sliding window,which is composed of some parameters satisfying with thermal load balance,can select the target historical fault-free reference data as the template which is similar to the current snapshot data.The size of sliding window is usually given according to empirical values,while the influence of different sizes of sliding windows on fault detection of an air conditioning system is not further studied.The air conditioning system is a dynamic response process,and the operating parameters change with the change of the load,while the response of the controller is delayed.In a variable air volume(VAV)air conditioning system controlled by the total air volume method,in order to ensure sufficient response time,30 data points are selected first,and then their multiples are selected.Three different sizes of sliding windows with 30,60 and 90 data points are applied to compare the fault detection effect in this paper.The results show that if the size of the sliding window is 60 data points,the average fault-free detection ratio is 80.17%in fault-free testing days,and the average fault detection ratio is 88.47%in faulty testing days.
文摘It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, the air conditioning system is analysed and an innovative way is suggested. We use natural low temperature of shallow sub surface (1 - 3 m) of the earth—geothermal cooling system. It is known that majority of the households and the apartment complexes in India have two tanks for water storage. One is the underground water sump and the other is the overhead water tank. In our study, we use these two water storage systems for space cooling during summer and also for heating during winter. The main aim of our paper is air-conditioning of the space in an economic way to save electricity. It is based on a simple idea of transferring the low temperature from underground water sump to the room in the house using water as a mode of transport. Since India is a tropical country located at low latitude, most of the year, the air temperature is high and demands space cooling. However, for a couple of months during severe winter months (Dec.-Jan.) at Ahmedabad, heating of the space is required. For heating the space, we suggest to use the well-known solar water heater. Effective use of heat exchanger is shown through computation, modelling schemes and lab experiment. We recommend geothermal cooling for 10 months in a year and solar hot water system during 2 months of winter. It is observed that the ambient air temperature of 35°C - 40°C in the room can be brought down to 26°C without much consumption of electricity. In a similar manner, the room temperature at night (13°C) during winter in Ahmedabad can be increased to 27°C through circulation of water from solar water heater in the heat exchanger.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09,2006BAJ02A13-4) supported by the National Key Technologies R & D Program of China
文摘To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.
基金Xi'an Polytechnic University Graduate Innovational Foundation(chx080608)
文摘The evaporative cooling,which assists the refrigeration machinery air-conditioning systems test-rig,has been designed.Its structure and working principle were described,and the performance test was conducted and analyzed.The test shows that making full use of the evaporative cooling "free cooling" in Spring and Autumn seasons can fully meet the requirements of air-conditioned comfort through the switch of the function in different seasons.Taking into account the evaporative cooling fan and pump energy consumption,compared with the traditional mechanical refrigeration system,more than 80 percent of energy can be saved,and the energy efficiency ratio of the Unit(EER)is as high as 7.63.Using the two stages of indirect evaporative cooling to pre-cool the new wind in summer,under the conditions of the same air supply temperature requirements,0.83 kg/s chilled water saved can be equivalent to the traditional mechanical refrigeration system,and when the new wind ratio up to 50 percent,more than 10 percent load was reduced in mechanical refrigeration system.The overall EER increased about 35 percent.
基金Supported by Program of Science and Technology of Hunan Province(2007FJ2006)Project the Program of Science and Tech-nology of Hunan Province(2007TP4030)Hunan Provincial Natural Science Foundation of China(08JJ3093)
文摘This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of resource loss and an emission entropy from the condense heat recovery system in the air conditioning refrigerating machine were introduced.For the evaluation of the entropies,we developed a new algorithm for the parameter identification,called the composite influence coefficient,based on the Least Squares Support Vector Machine method.By simulation,the numerical experiments shows that the Least Squares Support Vector Machine method is one of the powerful methods for the parameter identification to compute the damage entropy of the condense heat,with the largest training error being-0.025(the relative error being-3.56%),and the biggest test error being 0.015(the relative error being 2.5%).
基金Supported by the National Natural Science Foundation of China(50878177)the Rearch Fund for the Doctoral Program of Higher Education
文摘In order to investigate the bacteria and fungi aerosol characteristic distribution in HVAC-system and its components at Shaanxi History Museum.Measurements were performed to probe the bacteria and fungi aerosol in HVAC systems,located at Xi'an city,China.The results showed that there was fungi growth inside the ventilation ducts,fungi contamination was worse than bacteria,and both of them were distributed into occupied space with the air supply ducts.The dominating genera of fungi was found to be Penicillium spp.and Aspergillus spp.,which was respectively 46.1% and 20.7% in settling fungi,and the dominating genera of fungi in dust were Cladosporium spp.and Penicillium spp.,which was 41.8% and 30.1% respectively.It suggests that available measures to improve and control the performance of HVAC-systems such as the maintenance,management and cleaning should be taken to prevent this pollution and to develop strategies to keep this pollution away.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09,2006BAJ02A13-4) supported by the National Key Technologies R & D Program of ChinaProject(CSTC,2008AB7110) supported by the Key Technologies R & D Programme of Chongqing,China
文摘This paper presents a method to acquire runtime distribution ratio of building air conditioning system under part load condition (part load coefficient of system) through practical energy consumption data. By utilizing monthly energy consumption data of the entire year as the analysis object,this paper identifies data distribution,verifies distribution characteristics and analyzes distribution probability density for the issue of running time distribution ratio of air conditioning system in part load zones in the whole operation period,thus providing a basic calculation basis for an overall analysis of energy efficiency of air conditioning system. In view of the general survey of public building energy consumption carried by the government of Chongqing,this paper takes the governmental office building as an example,the part load ratio coefficient corresponding to practical running of air conditioning system of governmental office building in Chongqing is obtained by utilizing the above probability analysis and the solving method of probability density function. By utilizing the ratio coefficient obtained using this method,the part load coefficient with any running ratio of air conditioning system can be obtained according to the requirement of analysis,which can be used in any load ratio for analyzing running energy efficiency of air conditioning system.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09+1 种基金2006BAJ02A13-4) supported by the National Key Technologies R&D ProgramProject(2006BAJ01A06-3) supported by the Key R & D Program during the Eleventh Five-Year Plan Period,China
文摘A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.
基金Supported by the combined project of the Science and Technology Ministry of Guangdong province and the Science and Tech-nology Ministry of Guangzhou city(2007A04020004,2007C13G0161)
文摘The operating theory of an evaporative condenser was expatiated.The difference between an evaporative condensing refrigeration system and a general refrigeration system was analyzed.Compared with the air-cooled and the water-cooled,the virtues of energy-conservation and water-conservation of evaporative condensers were analyzed.Some questions existing in the application of evaporative condensers were pointed out,the corresponding solving methods were analyzed accordingly,and the development trend of evaporative condensing technique in mechanical refrigeration system field and the applied foreground of evaporative condensers in comfortable air conditioning were prospected.