Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical ...Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.展开更多
The All-pairs shortest path problem(ALL-SPP)aims to find the shortest path joining all the vertices in a given graph.This study proposed a new optimal method,Dhouib-matrix-ALL-SPP(DM-ALL-SPP)to solve the ALL-SPP based...The All-pairs shortest path problem(ALL-SPP)aims to find the shortest path joining all the vertices in a given graph.This study proposed a new optimal method,Dhouib-matrix-ALL-SPP(DM-ALL-SPP)to solve the ALL-SPP based on column-row navigation through the adjacency matrix.DM-ALL-SPP is designed to generate in a single execution the shortest path with details among all-pairs of vertices for a graph with positive and negative weighted edges.Even for graphs with a negative cycle,DM-ALL-SPP reported a negative cycle.In addition,DM-ALL-SPP continues to work for directed,undirected and mixed graphs.Furthermore,it is characterized by two phases:the first phase consists of adding by column repeated(n)iterations(where n is the number of vertices),and the second phase resides in adding by row executed in the worst case(n∗log(n))iterations.The first phase,focused on improving the elements of each column by adding their values to each row and modifying them with the smallest value.The second phase is emphasized by rows only for the elements modified in the first phase.Different instances from the literature were used to test the performance of the proposed DM-ALL-SPP method,which was developed using the Python programming language and the results were compared to those obtained by the Floyd-Warshall algorithm.展开更多
With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated...With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.展开更多
This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to del...This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.展开更多
With the rapid development of information technology,the combination of terminal technology,big data and mobile Internet and textbooks has become an irresistible trend in the modern education field.Under the context o...With the rapid development of information technology,the combination of terminal technology,big data and mobile Internet and textbooks has become an irresistible trend in the modern education field.Under the context of the Internet,carrying out education and teaching activities based on digital textbooks can give full play to the rich media,openness and interaction of digital textbooks,broaden students′horizon,enrich students′knowledge,and promote the improvement of students′ability and all-round development.However,in the specific teaching practice,there are also problems such as old compilation ideas,single compilation mode and low efficiency of personalized learning.Therefore,schools and teachers need to constantly innovate the presentation and arrangement of digital textbooks,strengthen technical support,deepen students′understanding of the teaching content of digital textbooks,promote the comprehensive development of students and improve the effectiveness of digital textbook teaching.展开更多
A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional an...A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional and single-line style,a road is no longer a linkage of road nodes but abstracted as a network node.Similarly,a road node is abstracted as the linkage of two ordered single-directional roads.This model can describe turn restrictions,circular roads,and other real scenarios usually described using a super-graph.Then a computing framework for optimal path finding(OPF)is presented.It is proved that classical Dijkstra and A algorithms can be directly used for OPF computing of any real-world road networks by transferring a super-graph to an SLSD network.Finally,using Singapore road network data,the proposed conceptual model and its corresponding optimal path finding algorithms are validated using a two-step optimal path finding algorithm with a pre-computing strategy based on the SLSD road network.展开更多
To solve the path following control problem for unmanned surface vehicles(USVs),a control method based on deep reinforcement learning(DRL)with long short-term memory(LSTM)networks is proposed.A distributed proximal po...To solve the path following control problem for unmanned surface vehicles(USVs),a control method based on deep reinforcement learning(DRL)with long short-term memory(LSTM)networks is proposed.A distributed proximal policy opti-mization(DPPO)algorithm,which is a modified actor-critic-based type of reinforcement learning algorithm,is adapted to improve the controller performance in repeated trials.The LSTM network structure is introduced to solve the strong temporal cor-relation USV control problem.In addition,a specially designed path dataset,including straight and curved paths,is established to simulate various sailing scenarios so that the reinforcement learning controller can obtain as much handling experience as possible.Extensive numerical simulation results demonstrate that the proposed method has better control performance under missions involving complex maneuvers than trained with limited scenarios and can potentially be applied in practice.展开更多
A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tange...A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.展开更多
A controller which is locally optimal near the origin and globally inverse optimal for the nonlinear system is proposed for path following of over actuated marine crafts with actuator dynamics. The motivation is the e...A controller which is locally optimal near the origin and globally inverse optimal for the nonlinear system is proposed for path following of over actuated marine crafts with actuator dynamics. The motivation is the existence of undesired signals sent to the actuators, which can result in bad behavior in path following. To attenuate the oscillation of the control signal and obtain smooth thrust outputs, the actuator dynamics are added into the ship maneuvering model. Instead of modifying the Line-of-Sight (LOS) guidance law, this proposed controller can easily adjust the vessel speed to minimize the large cross-track error caused by the high vessel speed when it is turning. Numerical simulations demonstrate the validity of this proposed controller.展开更多
Because of the limitations of electric vehicle(EV)battery technology and relevant supporting facilities,there is a great risk of breakdown of EVs during driving.The resulting driver“range anxiety”greatly affects the...Because of the limitations of electric vehicle(EV)battery technology and relevant supporting facilities,there is a great risk of breakdown of EVs during driving.The resulting driver“range anxiety”greatly affects the travel quality of EVs.These limitations should be overcome to promote the use of EVs.In this study,a method for travel path planning considering EV power supply was developed.First,based on real-time road conditions,a dynamic energy model of EVs was established considering the driving energy and accessory energy.Second,a multi-objective travel path planning model of EVs was constructed considering the power supply,taking the distance,time,energy,and charging cost as the optimization objectives.Finally,taking the actual traffic network of 15 km×15 km area in a city as the research object,the model was simulated and verified in MATLAB based on Dijkstra shortest path algorithm.The simulation results show that compared with the traditional route planning method,the total distance in the proposed optimal route planning method increased by 1.18%,but the energy consumption,charging cost,and driving time decreased by 11.62%,41.26%and 11.00%,respectively,thus effectively reducing the travel cost of EVs and improving the driving quality of EVs.展开更多
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ...A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.展开更多
The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space,low power consumption,and excellent flexibility.However,the rotation of the end effector along the tool...The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space,low power consumption,and excellent flexibility.However,the rotation of the end effector along the tool axis is functionally redundant when using a robotic arm for five-axis machining.In the process of ship construction,the performance of the parts’protective coating needs to bemachined tomeet the Performance Standard of Protective Coatings(PSPC).The arbitrary redundancy configuration in path planning will result in drastic fluctuations in the robot joint angle,greatly reducing machining quality and efficiency.There have been some studies on singleobjective optimization of redundant variables,However,the quality and efficiency of milling are not affected by a single factor,it is usually influenced by several factors,such as the manipulator stiffness,the joint motion smoothness,and the energy consumption.To solve this problem,this paper proposed a new path optimization method for the industrial robot when it is used for five-axis machining.The path smoothness performance index and the energy consumption index are established based on the joint acceleration and the joint velocity,respectively.The path planning issue is formulated as a constrained multi-objective optimization problem by taking into account the constraints of joint limits and singularity avoidance.Then,the path is split into multiple segments for optimization to avoid the slow convergence rate caused by the high dimension.An algorithm combining the non-dominated sorting genetic algorithm(NSGA-II)and the differential evolution(DE)algorithm is employed to solve the above optimization problem.The simulations validate the effectiveness of the algorithm,showing the improvement of smoothness and the reduction of energy consumption.展开更多
Exploring the synergy types and optimization paths between Poverty Alleviation Effectiveness and Rural Revitalization is necessary for achieving the two centenary goals.Taking poverty alleviation counties in Hunan Pro...Exploring the synergy types and optimization paths between Poverty Alleviation Effectiveness and Rural Revitalization is necessary for achieving the two centenary goals.Taking poverty alleviation counties in Hunan Province,China as an example,our study proposed an indicator to measure the synergistic development between Poverty Alleviation Effectiveness and Rural Revitalization using the multi-index integrated evaluation method.Then,the coupling types were classified based on both the proposed indicator and regional characteristics.Besides,the corresponding optimization path for each coupling type was proposed to promote the synergistic development of Poverty Alleviation and Rural Revitalization.Results are as follows:1)Lower synergy focused on the southwestern Hunan,while low synergy is widely distributed(such as the west,southwest,northwest,and midland).Moderate synergy is in the midland,such as Huaihua and Chenzhou cities.High synergy is distributed in Yongzhou,Huaihua,Xiangxi cities,etc.Besides,only Hecheng City belongs to the higher synergy.2)This paper proposes corresponding development paths for different development characteristics and main problems from multiple perspectives of the protection system,industrial planning,and rural market.Continuously consolidate and enhance the effectiveness of Poverty Alleviation and Rural Revitalization to achieve coupled and synergistic development of the two systems.Our research results can provide theoretical support for implementing Poverty Alleviation and Rural Revitalization in Hunan Province,China.展开更多
In order to alleviate urban traffic congestion and provide fast vehicle paths,a hidden Markov model(HMM)based on multi-feature data of urban regional roads is constructed to solve the problems of low recognition rate ...In order to alleviate urban traffic congestion and provide fast vehicle paths,a hidden Markov model(HMM)based on multi-feature data of urban regional roads is constructed to solve the problems of low recognition rate and poor instability of traditional model algorithms.At first,the HHM is obtained by training.Then according to dynamic planning principle,the traffic states of intersections are obtained by the Viterbi algorithm.Finally,the optimal path is selected based on the obtained traffic states of intersections.The experiment results show that the proposed method is superior to other algorithms in road unobstruction rate and recognition rate under complex road conditions.展开更多
Consideration of the travel time variation for rescue vehicles is significant in the field of emergency management research.Because of uncertain factors,such as the weather or OD(origin-destination)variations caused b...Consideration of the travel time variation for rescue vehicles is significant in the field of emergency management research.Because of uncertain factors,such as the weather or OD(origin-destination)variations caused by traffic accidents,travel time is a random variable.In emergency situations,it is particularly necessary to determine the optimal reliable route of rescue vehicles from the perspective of uncertainty.This paper first proposes an optimal reliable path finding(ORPF)model for rescue vehicles,which considers the uncertainties of travel time,and link correlations.On this basis,it investigates how to optimize rescue vehicle allocation to minimize rescue time,taking into account travel time reliability under uncertain conditions.Because of the non-additive property of the objective function,this paper adopts a heuristic algorithm based on the K-shortest path algorithm,and inequality techniques to tackle the proposed modified integer programming model.Finally,the numerical experiments are presented to verify the accuracy and effectiveness of the proposed model and algorithm.The results show that ignoring travel time reliability may lead to an over-or under-estimation of the effective travel time of rescue vehicles on a particular path,and thereby an incorrect allocation scheme.展开更多
To enhance the efficiency of warehouse order management,this study investigates a dual-com-mand operation mode in the Flying-V non-traditional warehouse layout.Three dual-command opera-tion strategies are designed,and...To enhance the efficiency of warehouse order management,this study investigates a dual-com-mand operation mode in the Flying-V non-traditional warehouse layout.Three dual-command opera-tion strategies are designed,and a dual-command operation path optimization model is established with the shortest path as the optimization goal.Furthermore,a genetic algorithm based on a dynamic decoding strategy is proposed.Simulation results demonstrate that the Flying-V layout warehouse management and access cooperation operation can reduce the operation time by an average of 25%-35%compared with the single access operation path,and by an average of 13%-23%compared with the‘deposit first and then pick’operation path.These findings provide evidence for the effec-tiveness of the optimization model and algorithm.展开更多
Due to the rigorous fiscal terms and huge potential risk of risk service contracts,optimizing oil production paths is one of the main challenges in designing oilfield development plans.In this paper,an oil production ...Due to the rigorous fiscal terms and huge potential risk of risk service contracts,optimizing oil production paths is one of the main challenges in designing oilfield development plans.In this paper,an oil production path optimization model is developed to maximize economic benefits within constraints of technology factors and oil contracts.This analysis describes the effects of risk service contract terms on parameters of inputs and outputs and quantifies the relationships between production and production time,revenues,investment and costs.An oil service development and production project is illustrated in which the optimal production path under its own geological conditions and contract terms is calculated.The influences of oil price,service fees per barrel and operating costs on the optimal production have been examined by sensitivity analysis.The results show that the oil price has the largest impact on the optimal production,which is negatively related to oil price and positively related to service fees per barrel and operating costs.展开更多
Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved ...Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved in polynomial time. The present algorithms focused mainly on how to obtain a precisely pareto optimal solution for MSPP resulting in a long time to obtain multiple pareto optimal solutions with them. In order to obtain a set of satisfied solutions for MSPP in reasonable time to meet the demand of a decision maker, a genetic algo- rithm MSPP-GA is presented to solve the MSPP with typically competing objectives, cost and time, in this pa- per. The encoding of the solution and the operators such as crossover, mutation and selection are developed. The algorithm introduced pareto domination tournament and sharing based selection operator, which can not only directly search the pareto optimal frontier but also maintain the diversity of populations in the process of evolutionary computation. Experimental results show that MSPP-GA can obtain most efficient solutions distributed all along the pareto frontier in less time than an exact algorithm. The algorithm proposed in this paper provides a new and effective method of how to obtain the set of pareto optimal solutions for other multiple objective optimization problems in a short time.展开更多
Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is t...Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is transformed into a centralized optimal control problem where collision-free conditions and mechanical limits are considered.Since the formulated optimal control problem is of large state space and highly nonlinear,an efficient hierarchical initialization technique based on the Dubins-curve method is proposed.Then,a model predictive controller is designed to track the obtained reference trajectory in the presence of initial state error and external disturbances.Numerical experiments demonstrate that the proposed“offline planningþonline tracking”framework can achieve efficient and robust coordinated taxiing planning and tracking even in the presence of initial state error and continuous external disturbances.展开更多
As an important role in the urban land price system, the basic land price appraisal directs and refleets all kinds of land price in the real estate market. Using geographic information systems (GIS) with algo rithms...As an important role in the urban land price system, the basic land price appraisal directs and refleets all kinds of land price in the real estate market. Using geographic information systems (GIS) with algo rithms and powerful analysis functions to valuate land will improve the rationality and convenience of land valu- ation. The objective of the study on basic land price using the optimal path algorithm is to decrease the man made error, enhance automatization, avoid make inconvenience by roadblock object.展开更多
文摘Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.
文摘The All-pairs shortest path problem(ALL-SPP)aims to find the shortest path joining all the vertices in a given graph.This study proposed a new optimal method,Dhouib-matrix-ALL-SPP(DM-ALL-SPP)to solve the ALL-SPP based on column-row navigation through the adjacency matrix.DM-ALL-SPP is designed to generate in a single execution the shortest path with details among all-pairs of vertices for a graph with positive and negative weighted edges.Even for graphs with a negative cycle,DM-ALL-SPP reported a negative cycle.In addition,DM-ALL-SPP continues to work for directed,undirected and mixed graphs.Furthermore,it is characterized by two phases:the first phase consists of adding by column repeated(n)iterations(where n is the number of vertices),and the second phase resides in adding by row executed in the worst case(n∗log(n))iterations.The first phase,focused on improving the elements of each column by adding their values to each row and modifying them with the smallest value.The second phase is emphasized by rows only for the elements modified in the first phase.Different instances from the literature were used to test the performance of the proposed DM-ALL-SPP method,which was developed using the Python programming language and the results were compared to those obtained by the Floyd-Warshall algorithm.
基金supported in part by National Natural Science Foundation of China under Grants 62122069, 62071431, 62072490 and 62301490in part by Science and Technology Development Fund of Macao SAR, China under Grant 0158/2022/A+2 种基金in part by the Guangdong Basic and Applied Basic Research Foundation (2022A1515011287)in part by MYRG202000107-IOTSCin part by FDCT SKL-IOTSC (UM)-2021-2023
文摘With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.
基金supported by Northern Border University,Arar,Kingdom of Saudi Arabia,through the Project Number“NBU-FFR-2024-2248-03”.
文摘This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.
基金supported by Second Batch of Curriculum Assessment Reform Pilot Project of Sanya University,(SYJGKH2023029)。
文摘With the rapid development of information technology,the combination of terminal technology,big data and mobile Internet and textbooks has become an irresistible trend in the modern education field.Under the context of the Internet,carrying out education and teaching activities based on digital textbooks can give full play to the rich media,openness and interaction of digital textbooks,broaden students′horizon,enrich students′knowledge,and promote the improvement of students′ability and all-round development.However,in the specific teaching practice,there are also problems such as old compilation ideas,single compilation mode and low efficiency of personalized learning.Therefore,schools and teachers need to constantly innovate the presentation and arrangement of digital textbooks,strengthen technical support,deepen students′understanding of the teaching content of digital textbooks,promote the comprehensive development of students and improve the effectiveness of digital textbook teaching.
基金The National Key Technology R&D Program of China during the 11th Five Year Plan Period(No.2008BAJ11B01)
文摘A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional and single-line style,a road is no longer a linkage of road nodes but abstracted as a network node.Similarly,a road node is abstracted as the linkage of two ordered single-directional roads.This model can describe turn restrictions,circular roads,and other real scenarios usually described using a super-graph.Then a computing framework for optimal path finding(OPF)is presented.It is proved that classical Dijkstra and A algorithms can be directly used for OPF computing of any real-world road networks by transferring a super-graph to an SLSD network.Finally,using Singapore road network data,the proposed conceptual model and its corresponding optimal path finding algorithms are validated using a two-step optimal path finding algorithm with a pre-computing strategy based on the SLSD road network.
基金supported by the National Natural Science Foundation(61601491)the Natural Science Foundation of Hubei Province(2018CFC865)the China Postdoctoral Science Foundation Funded Project(2016T45686).
文摘To solve the path following control problem for unmanned surface vehicles(USVs),a control method based on deep reinforcement learning(DRL)with long short-term memory(LSTM)networks is proposed.A distributed proximal policy opti-mization(DPPO)algorithm,which is a modified actor-critic-based type of reinforcement learning algorithm,is adapted to improve the controller performance in repeated trials.The LSTM network structure is introduced to solve the strong temporal cor-relation USV control problem.In addition,a specially designed path dataset,including straight and curved paths,is established to simulate various sailing scenarios so that the reinforcement learning controller can obtain as much handling experience as possible.Extensive numerical simulation results demonstrate that the proposed method has better control performance under missions involving complex maneuvers than trained with limited scenarios and can potentially be applied in practice.
基金Supported by National Natural Science Foundation of China(Grant No.50875171)National Hi-tech Research and Development Program of China(863 Program,Grant No.2009AA04Z150)
文摘A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 61301279, 51479158 and the Fundamental Research Funds for the Central Universities under Grant No. WUT: 163102006
文摘A controller which is locally optimal near the origin and globally inverse optimal for the nonlinear system is proposed for path following of over actuated marine crafts with actuator dynamics. The motivation is the existence of undesired signals sent to the actuators, which can result in bad behavior in path following. To attenuate the oscillation of the control signal and obtain smooth thrust outputs, the actuator dynamics are added into the ship maneuvering model. Instead of modifying the Line-of-Sight (LOS) guidance law, this proposed controller can easily adjust the vessel speed to minimize the large cross-track error caused by the high vessel speed when it is turning. Numerical simulations demonstrate the validity of this proposed controller.
基金Projects(51908388,51508315,51905320)supported by the National Natural Science Foundation of ChinaProject(2019 JZZY 010911)supported by the Key R&D Program of Shandong Province,China+1 种基金Project supported by the Shandong University of Technology&Zibo City Integration Develo pment Project,ChinaProject(ZR 2021 MG 012)supported by Shandong Provincial Natural Science Foundation,China。
文摘Because of the limitations of electric vehicle(EV)battery technology and relevant supporting facilities,there is a great risk of breakdown of EVs during driving.The resulting driver“range anxiety”greatly affects the travel quality of EVs.These limitations should be overcome to promote the use of EVs.In this study,a method for travel path planning considering EV power supply was developed.First,based on real-time road conditions,a dynamic energy model of EVs was established considering the driving energy and accessory energy.Second,a multi-objective travel path planning model of EVs was constructed considering the power supply,taking the distance,time,energy,and charging cost as the optimization objectives.Finally,taking the actual traffic network of 15 km×15 km area in a city as the research object,the model was simulated and verified in MATLAB based on Dijkstra shortest path algorithm.The simulation results show that compared with the traditional route planning method,the total distance in the proposed optimal route planning method increased by 1.18%,but the energy consumption,charging cost,and driving time decreased by 11.62%,41.26%and 11.00%,respectively,thus effectively reducing the travel cost of EVs and improving the driving quality of EVs.
文摘A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.
文摘The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space,low power consumption,and excellent flexibility.However,the rotation of the end effector along the tool axis is functionally redundant when using a robotic arm for five-axis machining.In the process of ship construction,the performance of the parts’protective coating needs to bemachined tomeet the Performance Standard of Protective Coatings(PSPC).The arbitrary redundancy configuration in path planning will result in drastic fluctuations in the robot joint angle,greatly reducing machining quality and efficiency.There have been some studies on singleobjective optimization of redundant variables,However,the quality and efficiency of milling are not affected by a single factor,it is usually influenced by several factors,such as the manipulator stiffness,the joint motion smoothness,and the energy consumption.To solve this problem,this paper proposed a new path optimization method for the industrial robot when it is used for five-axis machining.The path smoothness performance index and the energy consumption index are established based on the joint acceleration and the joint velocity,respectively.The path planning issue is formulated as a constrained multi-objective optimization problem by taking into account the constraints of joint limits and singularity avoidance.Then,the path is split into multiple segments for optimization to avoid the slow convergence rate caused by the high dimension.An algorithm combining the non-dominated sorting genetic algorithm(NSGA-II)and the differential evolution(DE)algorithm is employed to solve the above optimization problem.The simulations validate the effectiveness of the algorithm,showing the improvement of smoothness and the reduction of energy consumption.
基金Under the auspices of the National Natural Science Foundation of China(No.41971219,41571168)Natural Science Foundation of Hunan Province(No.2020JJ4372)Philosophy and Social Science Fund Project of Hunan Province(No.18ZDB015)。
文摘Exploring the synergy types and optimization paths between Poverty Alleviation Effectiveness and Rural Revitalization is necessary for achieving the two centenary goals.Taking poverty alleviation counties in Hunan Province,China as an example,our study proposed an indicator to measure the synergistic development between Poverty Alleviation Effectiveness and Rural Revitalization using the multi-index integrated evaluation method.Then,the coupling types were classified based on both the proposed indicator and regional characteristics.Besides,the corresponding optimization path for each coupling type was proposed to promote the synergistic development of Poverty Alleviation and Rural Revitalization.Results are as follows:1)Lower synergy focused on the southwestern Hunan,while low synergy is widely distributed(such as the west,southwest,northwest,and midland).Moderate synergy is in the midland,such as Huaihua and Chenzhou cities.High synergy is distributed in Yongzhou,Huaihua,Xiangxi cities,etc.Besides,only Hecheng City belongs to the higher synergy.2)This paper proposes corresponding development paths for different development characteristics and main problems from multiple perspectives of the protection system,industrial planning,and rural market.Continuously consolidate and enhance the effectiveness of Poverty Alleviation and Rural Revitalization to achieve coupled and synergistic development of the two systems.Our research results can provide theoretical support for implementing Poverty Alleviation and Rural Revitalization in Hunan Province,China.
基金Natural Science Foundation of Gansu Provincial Science&Technology Department(No.1504GKCA018)。
文摘In order to alleviate urban traffic congestion and provide fast vehicle paths,a hidden Markov model(HMM)based on multi-feature data of urban regional roads is constructed to solve the problems of low recognition rate and poor instability of traditional model algorithms.At first,the HHM is obtained by training.Then according to dynamic planning principle,the traffic states of intersections are obtained by the Viterbi algorithm.Finally,the optimal path is selected based on the obtained traffic states of intersections.The experiment results show that the proposed method is superior to other algorithms in road unobstruction rate and recognition rate under complex road conditions.
基金Projects(72071202,71671184)supported by the National Natural Science Foundation of ChinaProject(22YJCZH144)supported by Humanities and Social Sciences Youth Foundation,Ministry of Education of China+3 种基金Project(2022M712680)supported by Postdoctoral Research Foundation of ChinaProject(22KJB110027)supported by Natural Science Foundation of Colleges and Universities in Jiangsu Province,ChinaProject(D2019046)supported by Initiation Foundation of Xuzhou Medical University,ChinaProject(2021SJA1079)supported by General Project of Philosophy and Social Science Research in Jiangsu Universities,China。
文摘Consideration of the travel time variation for rescue vehicles is significant in the field of emergency management research.Because of uncertain factors,such as the weather or OD(origin-destination)variations caused by traffic accidents,travel time is a random variable.In emergency situations,it is particularly necessary to determine the optimal reliable route of rescue vehicles from the perspective of uncertainty.This paper first proposes an optimal reliable path finding(ORPF)model for rescue vehicles,which considers the uncertainties of travel time,and link correlations.On this basis,it investigates how to optimize rescue vehicle allocation to minimize rescue time,taking into account travel time reliability under uncertain conditions.Because of the non-additive property of the objective function,this paper adopts a heuristic algorithm based on the K-shortest path algorithm,and inequality techniques to tackle the proposed modified integer programming model.Finally,the numerical experiments are presented to verify the accuracy and effectiveness of the proposed model and algorithm.The results show that ignoring travel time reliability may lead to an over-or under-estimation of the effective travel time of rescue vehicles on a particular path,and thereby an incorrect allocation scheme.
基金the National Natural Science Foundation of China(51565036).
文摘To enhance the efficiency of warehouse order management,this study investigates a dual-com-mand operation mode in the Flying-V non-traditional warehouse layout.Three dual-command opera-tion strategies are designed,and a dual-command operation path optimization model is established with the shortest path as the optimization goal.Furthermore,a genetic algorithm based on a dynamic decoding strategy is proposed.Simulation results demonstrate that the Flying-V layout warehouse management and access cooperation operation can reduce the operation time by an average of 25%-35%compared with the single access operation path,and by an average of 13%-23%compared with the‘deposit first and then pick’operation path.These findings provide evidence for the effec-tiveness of the optimization model and algorithm.
基金Funding for this work was provided by the Major Project from the National Social Science Foundation of China through research on replacement strategies for overseas oil and gas resources based on the perspective of China’s petroleum security under the project number 11&ZD164
文摘Due to the rigorous fiscal terms and huge potential risk of risk service contracts,optimizing oil production paths is one of the main challenges in designing oilfield development plans.In this paper,an oil production path optimization model is developed to maximize economic benefits within constraints of technology factors and oil contracts.This analysis describes the effects of risk service contract terms on parameters of inputs and outputs and quantifies the relationships between production and production time,revenues,investment and costs.An oil service development and production project is illustrated in which the optimal production path under its own geological conditions and contract terms is calculated.The influences of oil price,service fees per barrel and operating costs on the optimal production have been examined by sensitivity analysis.The results show that the oil price has the largest impact on the optimal production,which is negatively related to oil price and positively related to service fees per barrel and operating costs.
文摘Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved in polynomial time. The present algorithms focused mainly on how to obtain a precisely pareto optimal solution for MSPP resulting in a long time to obtain multiple pareto optimal solutions with them. In order to obtain a set of satisfied solutions for MSPP in reasonable time to meet the demand of a decision maker, a genetic algo- rithm MSPP-GA is presented to solve the MSPP with typically competing objectives, cost and time, in this pa- per. The encoding of the solution and the operators such as crossover, mutation and selection are developed. The algorithm introduced pareto domination tournament and sharing based selection operator, which can not only directly search the pareto optimal frontier but also maintain the diversity of populations in the process of evolutionary computation. Experimental results show that MSPP-GA can obtain most efficient solutions distributed all along the pareto frontier in less time than an exact algorithm. The algorithm proposed in this paper provides a new and effective method of how to obtain the set of pareto optimal solutions for other multiple objective optimization problems in a short time.
文摘Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is transformed into a centralized optimal control problem where collision-free conditions and mechanical limits are considered.Since the formulated optimal control problem is of large state space and highly nonlinear,an efficient hierarchical initialization technique based on the Dubins-curve method is proposed.Then,a model predictive controller is designed to track the obtained reference trajectory in the presence of initial state error and external disturbances.Numerical experiments demonstrate that the proposed“offline planningþonline tracking”framework can achieve efficient and robust coordinated taxiing planning and tracking even in the presence of initial state error and continuous external disturbances.
文摘As an important role in the urban land price system, the basic land price appraisal directs and refleets all kinds of land price in the real estate market. Using geographic information systems (GIS) with algo rithms and powerful analysis functions to valuate land will improve the rationality and convenience of land valu- ation. The objective of the study on basic land price using the optimal path algorithm is to decrease the man made error, enhance automatization, avoid make inconvenience by roadblock object.