Due to rapidly development of high power semiconductor devices with fast control features have made possible to control the power flow more efficiently and effectively. The Flexible AC Transmission Systems (FACTS) i...Due to rapidly development of high power semiconductor devices with fast control features have made possible to control the power flow more efficiently and effectively. The Flexible AC Transmission Systems (FACTS) in this category introduces several innovative operating control devices. One of the recent devices is Advanced Unified Power Flow Controller (AUPFC) or multi-converter UPFC, which can control bus voltage and real and reactive power flows of more than one line or even a sub-network. This paper presents performance analysis of AUPFC based on d-q axis model theory. Based on the analysis, a new fuzzy logic rules based control algorithm has been developed in this paper which improves the system performance. The control rules are structured depending upon the relationship between series inserted voltages in multi-line and the desired changes of real and reactive power flows in the control network. The impacts of different controllers along with parameters of series connected transformers and transmission lines have been investigated through developed control block models in SIMULINK. The effectiveness of the proposed scheme is demonstrated by a case study.展开更多
Multi-converter system is mainly used in advanced automotive systems.Different converters and inverters are taking part in automotive systems to provide different voltage levels in a multi-converter system.It involves...Multi-converter system is mainly used in advanced automotive systems.Different converters and inverters are taking part in automotive systems to provide different voltage levels in a multi-converter system.It involves constant voltage load(CVL),constant power load(CPL)and other loads.The CPL in such systems offers negative impedance characteristic and it creates a destabilizing effect on the main converter.The effect of destabilization can be reduced by increasing the CVL or inserting parasitic components.Attempts have been made by authors to improve the stability by using parasitics of different components such as switch,diode and inductor.Influence of insertion of parasitics including the series equivalent resistance of the filter capacitor and variation in CVL on the performance of main converter is mathematically analyzed and conflicting behavior between system stability and efficiency is observed.The optimum solution between these two functions is obtained by using multi-objective decision making(MODM)by varying parasitics of different components and CVL.An attempt has been made to demonstrate the effect of CVL load and the parasitics on the stability and efficiency of the main converter,experimentally.展开更多
This paper addresses the attuned use of multi- converter flexible alternative current transmission systems (M-FACTS) devices and demand response (DR) to perform congestion management (CM) in the deregulated envi...This paper addresses the attuned use of multi- converter flexible alternative current transmission systems (M-FACTS) devices and demand response (DR) to perform congestion management (CM) in the deregulated environment. The strong control capability of the M- FACTS offers a great potential in solving many of the problems facing electric utilities. Besides, DR is a novel procedure that can be an effective tool for reduction of congestion. A market clearing procedure is conducted based on maximizing social welfare (SW) and congestion as network constraint is paid by using concurrently the DR and M-FACTS. A multi-objective problem (MOP) based on the sum of the payments received by the generators for changing their output, the total payment received by DR participants to reduce their load and M-FACTS cost is systematized. For the solution of this problem a nonlinear time-varying evolution (NTVE) based multi-objective particle swarm optimization (MOPSO) style is formed. Fuzzy decision-making (FDM) and technique for order preference by similarity to ideal solution (TOPSIS) approaches are employed for finding the best compromise solution from the set of Pareto-solutions obtained through multi-objective particle swarm optimization-nonlinear time-varying evolution (MOPSO-NTVE). In a real power system, Azarbaijan regional power system of Iran, comparative analysis of the results obtained from the application of the DR & unified power flow controller (UPFC) and the DR & M-FACTS are presented.展开更多
文摘Due to rapidly development of high power semiconductor devices with fast control features have made possible to control the power flow more efficiently and effectively. The Flexible AC Transmission Systems (FACTS) in this category introduces several innovative operating control devices. One of the recent devices is Advanced Unified Power Flow Controller (AUPFC) or multi-converter UPFC, which can control bus voltage and real and reactive power flows of more than one line or even a sub-network. This paper presents performance analysis of AUPFC based on d-q axis model theory. Based on the analysis, a new fuzzy logic rules based control algorithm has been developed in this paper which improves the system performance. The control rules are structured depending upon the relationship between series inserted voltages in multi-line and the desired changes of real and reactive power flows in the control network. The impacts of different controllers along with parameters of series connected transformers and transmission lines have been investigated through developed control block models in SIMULINK. The effectiveness of the proposed scheme is demonstrated by a case study.
文摘Multi-converter system is mainly used in advanced automotive systems.Different converters and inverters are taking part in automotive systems to provide different voltage levels in a multi-converter system.It involves constant voltage load(CVL),constant power load(CPL)and other loads.The CPL in such systems offers negative impedance characteristic and it creates a destabilizing effect on the main converter.The effect of destabilization can be reduced by increasing the CVL or inserting parasitic components.Attempts have been made by authors to improve the stability by using parasitics of different components such as switch,diode and inductor.Influence of insertion of parasitics including the series equivalent resistance of the filter capacitor and variation in CVL on the performance of main converter is mathematically analyzed and conflicting behavior between system stability and efficiency is observed.The optimum solution between these two functions is obtained by using multi-objective decision making(MODM)by varying parasitics of different components and CVL.An attempt has been made to demonstrate the effect of CVL load and the parasitics on the stability and efficiency of the main converter,experimentally.
文摘This paper addresses the attuned use of multi- converter flexible alternative current transmission systems (M-FACTS) devices and demand response (DR) to perform congestion management (CM) in the deregulated environment. The strong control capability of the M- FACTS offers a great potential in solving many of the problems facing electric utilities. Besides, DR is a novel procedure that can be an effective tool for reduction of congestion. A market clearing procedure is conducted based on maximizing social welfare (SW) and congestion as network constraint is paid by using concurrently the DR and M-FACTS. A multi-objective problem (MOP) based on the sum of the payments received by the generators for changing their output, the total payment received by DR participants to reduce their load and M-FACTS cost is systematized. For the solution of this problem a nonlinear time-varying evolution (NTVE) based multi-objective particle swarm optimization (MOPSO) style is formed. Fuzzy decision-making (FDM) and technique for order preference by similarity to ideal solution (TOPSIS) approaches are employed for finding the best compromise solution from the set of Pareto-solutions obtained through multi-objective particle swarm optimization-nonlinear time-varying evolution (MOPSO-NTVE). In a real power system, Azarbaijan regional power system of Iran, comparative analysis of the results obtained from the application of the DR & unified power flow controller (UPFC) and the DR & M-FACTS are presented.