The multiple coupling of composite laminates has a unique advantage in improving the macro mechanical properties of composite structures.A total of three hygro-thermally stablemulti-coupled laminates with extensiontwi...The multiple coupling of composite laminates has a unique advantage in improving the macro mechanical properties of composite structures.A total of three hygro-thermally stablemulti-coupled laminates with extensiontwisting coupling were presented,which were conducive to the formation of passive adaptive structures.Then,the multi-coupled laminates were used to design the bending-twisting coupled box structure,in which the configuration of laminate and box structure could be extended to variable cross-section configuration.The optimal design of stacking sequence was realized,the optimization objectives of which were to maximize bending-twisting coupling of box structure and extension-twisting coupling of laminate,respectively.The effects of multiple coupling on hygro-thermal stability,coupling,failure strength,buckling load,robustness and other comprehensive mechanical properties of laminates and box structures were analyzed by parametric modeling method.The results show that the extension-twisting coupling of laminate and the bending-twisting coupling of box structures can be greatly improved by 450%and 260%at maximum,respectively.Meanwhile,it would have a negative impact on the failure strength and buckling load,which,however,can be minimized by a reasonable paving method.Multicoupled laminates have good robustness,and the bending-twisting coupling helps improve robustness.Finally,the hygro-thermal stability and mechanical properties were verified by numerical simulation with finite element method.展开更多
The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic gr...The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic ground condition. This approach is a direct hit to the atmospheric scattering OTF using the same original context of modulation transfer function (MTF) measurement, i.e., images of sinusoidal grating at different spatial frequencies. Both the amplitude and phase shift of the OTF at various zenith and azimuth angles can be obtained at an arbitrary spatial frequency.展开更多
A new method of multi-coupled single scattering (MCSS) for solving a vector radiative transfer equation is de- veloped and made public on Internet. Recent solutions from Chandrasekhar's X-Y method is used to valida...A new method of multi-coupled single scattering (MCSS) for solving a vector radiative transfer equation is de- veloped and made public on Internet. Recent solutions from Chandrasekhar's X-Y method is used to validate the MCSS's result, which shows high precision. The MCSS method is theoretically simple and clear, so it can be easily and credibly extended to the simulation of aerosol/cloud atmosphere's radiative properties, which provides effective support for research into polarized remote sensing.展开更多
基金the National Natural Science Foundation of China(Grant No.11472003)the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ30770)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.CX20200007).
文摘The multiple coupling of composite laminates has a unique advantage in improving the macro mechanical properties of composite structures.A total of three hygro-thermally stablemulti-coupled laminates with extensiontwisting coupling were presented,which were conducive to the formation of passive adaptive structures.Then,the multi-coupled laminates were used to design the bending-twisting coupled box structure,in which the configuration of laminate and box structure could be extended to variable cross-section configuration.The optimal design of stacking sequence was realized,the optimization objectives of which were to maximize bending-twisting coupling of box structure and extension-twisting coupling of laminate,respectively.The effects of multiple coupling on hygro-thermal stability,coupling,failure strength,buckling load,robustness and other comprehensive mechanical properties of laminates and box structures were analyzed by parametric modeling method.The results show that the extension-twisting coupling of laminate and the bending-twisting coupling of box structures can be greatly improved by 450%and 260%at maximum,respectively.Meanwhile,it would have a negative impact on the failure strength and buckling load,which,however,can be minimized by a reasonable paving method.Multicoupled laminates have good robustness,and the bending-twisting coupling helps improve robustness.Finally,the hygro-thermal stability and mechanical properties were verified by numerical simulation with finite element method.
基金supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences(Grant No.KGFZD-125-13-006)
文摘The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic ground condition. This approach is a direct hit to the atmospheric scattering OTF using the same original context of modulation transfer function (MTF) measurement, i.e., images of sinusoidal grating at different spatial frequencies. Both the amplitude and phase shift of the OTF at various zenith and azimuth angles can be obtained at an arbitrary spatial frequency.
基金Project supported by the Science Foundation of the Airborne Remote Sensing System,Large Research Infrastructure of the Chinese Academy of Sciences
文摘A new method of multi-coupled single scattering (MCSS) for solving a vector radiative transfer equation is de- veloped and made public on Internet. Recent solutions from Chandrasekhar's X-Y method is used to validate the MCSS's result, which shows high precision. The MCSS method is theoretically simple and clear, so it can be easily and credibly extended to the simulation of aerosol/cloud atmosphere's radiative properties, which provides effective support for research into polarized remote sensing.