An extended compromise ratio method(CRM) based on fuzzy distances is developed to solve fuzzy multi-attribute group decision making problems in which weights of attributes and ratings of alternatives on attributes a...An extended compromise ratio method(CRM) based on fuzzy distances is developed to solve fuzzy multi-attribute group decision making problems in which weights of attributes and ratings of alternatives on attributes are expressed with values of linguistic variables parameterized using triangular fuzzy numbers.A compromise solution is determined by introducing the ranking index based on the concept that the chosen alternative should be as close as possible to the positive ideal solution and as far away from the negative ideal solution as possible simultaneously.This proposed method is compared with other existing methods to show its feasibility and effectiveness and illustrated with an example of the military route selection problem as one of the possible applications.展开更多
Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are eff...Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.展开更多
The VIKOR method is a multi-criteria decision making aid, which employs linear normalization to offer compromise solu- tions and has been successfully applied to various group decision making problems. However, the co...The VIKOR method is a multi-criteria decision making aid, which employs linear normalization to offer compromise solu- tions and has been successfully applied to various group decision making problems. However, the conventional VIKOR techniques used to integrate group judgments and the information loss arising from defuzzification are problematic and distort final outcomes. An improved integration method, which is optimization-based, is proposed. And it can handle fuzzy criteria values and weights. The precondition for accurately defuzzifying triangular fuzzy num- bers is identified. Several effective defuzzification procedures are proposed to improve the extant VIKOR, and a comprehensive evaluation framework is offered to aid multi-criteria group decision making. Finally, a numerical example is provided to illustrate the practicability of the proposed method.展开更多
A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the ...A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.展开更多
Molecular microbiological methods, such as competetive PCR, real-time PCR, denaturing gradient gel electrophoresis (DGGE) and large-scale parallel-pyrosequencing, require the extraction of sufficient quantity of high ...Molecular microbiological methods, such as competetive PCR, real-time PCR, denaturing gradient gel electrophoresis (DGGE) and large-scale parallel-pyrosequencing, require the extraction of sufficient quantity of high quality DNA from microbiologically and chemically complex matrices. Due to difficulties in the field to standardize/select the optimum DNA preservation-extraction methods in view of laboratories differences, this article attempts to present a straight-forward mathematical framework for comparing some of the most commonly used methods. To this end, as a case study, the problem of selecting an optimum sample preservation-DNA extraction strategy for obtaining total bacterial DNA from swine feces was considered. Two sample preservation methods (liquid nitrogen and RNAlater?) and seven extraction techniques were paired and compared under six quantitative DNA analysis criteria: yield of extraction, purity of extracted DNA (A260/280 and A 260/230 ratios), duration of extraction, degradation degree of DNA, and cost. From a practical point of view, it is unlikely that a single sample preservation-DNA extraction strategy can be optimum for all selected criteria. Hence, a systematic multi-criteria decision-making (MCDM) approach was used to compare the methods. As a result, the ZR Fecal DNA MiniPrepTM DNA extraction kit for samples preserved either with liquid nitrogen or RNAlater? were identified as potential optimum solutions for obtaining total bacterial DNA from swine feces. Considering the need for practicality for in situ applications, we would recommend liquid nitrogen as sample preservation method, along with the ZR Fecal DNA MiniPrepTM kit. Total bacterial DNA obtained by this strategy can be suitable for downstream PCR-based DNA analyses of swine feces.展开更多
Nowadays,the use of renewable energies,especially wind,solar,and biomass,is essential as an effective solution to address global environmental and economic challenges.Therefore,the current study examines the energy-ec...Nowadays,the use of renewable energies,especially wind,solar,and biomass,is essential as an effective solution to address global environmental and economic challenges.Therefore,the current study examines the energy-economic-environmental analysis of off-grid electricity generation systems using solar panels,wind turbines,and biomass generators in various weather conditions in Iran.Simulations over 25 years were conducted using HOMER v2.81 software,aiming to determine the potential of each region and find the lowest cost of electricity production per kWh.In the end,to identify the most suitable location,the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method was employed to rank different stations based on simulation output parameters and some other influential factors.Considering the evaluation of various parameters,the stations in Yazd,Marand,and Dezful achieved the best results,while the stations in Ramsar,Shahrekord,and Gonbad presented the least favorable outcomes.In Yazd,the wind turbine is an economic priority,and a 100 kW wind turbine is utilized in the optimal system.In Yazd,where the simultaneous use of renewable energies is most prominent,the lowest pollutant production occurred with a quantity of 1174 kg/year.Annual energy losses are highest in Jask station and lowest in Yazd.展开更多
Deep geothermal energy presents large untapped renewable energy potential could significantly contribute to global energy needs. However, developing geothermal projects involves uncertainties regarding adequate geothe...Deep geothermal energy presents large untapped renewable energy potential could significantly contribute to global energy needs. However, developing geothermal projects involves uncertainties regarding adequate geothermal brine extraction and huge costs related to preparation phases and consequently drilling and stimulation activities. Therefore, evaluating utilization alternatives of such projects is a complex decision-making problem effectively addressed using multi-criteria decision-making (MCDM) methods. This study introduces the MCDM method utilizing analytic hierarchy process (AHP) and weighted decision matrix (WDM) to assess different utilization alternatives (electricity generation, direct heat use and cogeneration). The AHP method determines the weight of each criterion and sub-criterion, while the WDM calculates the final project grade. Five criteria groups - technological, geological, economic, societal and environmental – comprising twenty-eight influencing factors were selected and used for the assessment of investment in Enhanced Geothermal Systems (EGS) projects. The AHP-WDM method was used by 38 experts from six categories: industry, educational institution, research and technology organization (RTO), small- and medium-sized enterprises (SME), local community and other. These diverse expert inputs aimed to capture varying perspectives and knowledge influence investment decisions in geothermal energy. The results were analysed accordingly. The results underscore the importance of incorporating different viewpoints to develop robust, credible, and effective investment strategies for EGS projects. Therefore, this method will contribute to more efficient EGS project development, enabling thus a greater penetration of the EGS into the market. Additionally, the proposed AHP-WDM method was implemented for a case study examining two locations. Locations were assessed and compared on scenario-based evaluation. The results confirmed the method's adequacy for assessing various end uses and comparing project feasibility across different locations.展开更多
A method for ranking complementary judgment matrixes with traspezoidal fuzzy numbers based on Hausdorff metric distance and fuzzy compromise decision approach is proposed. With regard to fuzzy number complementary jud...A method for ranking complementary judgment matrixes with traspezoidal fuzzy numbers based on Hausdorff metric distance and fuzzy compromise decision approach is proposed. With regard to fuzzy number complementary judgment matrixes given by a decider group whose members have various weights, the expert's information was aggregated first by means of simple weight average(SWA) method and Bonissone calculational method. Hence a matrix including all the experts' preference information was got. Then the matrix' column members were added up and the fuzzy evaluation values of the alternatives were got. Lastly, the Hausdorff metric distance and fuzzy compromise decision approach were used to rank the fuzzy evaluation values and then the ranking values of all the alternatives were got. Because exact numbers and triangular fuzzy numbers could all be transformed into trapezoidal fuzzy numbers, the method developed can rank complementary judgment matrixes with trapezoidal fuzzy numbers, triangular fuzzy numbers and exact numbers as well. An illustrative example is also given to verify the developed method and to demonstrate its feasibility and practicality.展开更多
One of the most critical and complicated steps in mine design is a selection of suitable mining method based upon geological,geotechnical,geographical,safety and economical parameters.The aim of this study is developi...One of the most critical and complicated steps in mine design is a selection of suitable mining method based upon geological,geotechnical,geographical,safety and economical parameters.The aim of this study is developing a Monte Carlo simulation to selection the optimum mining method by using effective and major criteria and at the same time,taking subjective judgments of decision makers into consideration.Proposed approach is based on the combination of Monte Carlo simulation with conventional Analytic Hierarchy Process(AHP).Monte Carlo simulation is used to determine the confdence level of each alternative’s score,is calculated by AHP,with the respect to the variance of decision makers’opinion.The proposed method is applied for Jajarm Bauxite Mine in Iran and eventually the most appropriate mining methods for this mine are ranked.展开更多
Evaluation model was proposed which refers to fuzzy formalism of the personnel management issues taking account their specific characteristics. Application of TOPSIS (technique for order Performance by similarity to ...Evaluation model was proposed which refers to fuzzy formalism of the personnel management issues taking account their specific characteristics. Application of TOPSIS (technique for order Performance by similarity to ideal solution) method for evaluation and regulation of alternatives based on hierarchically structured criteria of qualitative character by multiple experts to intellectually support decisions made in staff management issues is reviewed in the article. Candidate selection experiment based on criteria system formed using TOPSIS method for evaluation of candidates during solution of hiring problems reviewed and obtained results were compared with results obtained using Matlab program package.展开更多
In recent years,multi-criteria sorting problems have become an interesting topic for researchers working on multi-criteria decision-making.ELimination and Choice Expressing REality(ELECTRE)-TRI and FlowSort are well-k...In recent years,multi-criteria sorting problems have become an interesting topic for researchers working on multi-criteria decision-making.ELimination and Choice Expressing REality(ELECTRE)-TRI and FlowSort are well-known approaches suggested for such a classification.The current study aimed to implement ELECTRE-TRI and FlowSort methods in the stock portfolio selection(SPS)as one of the most popular and important decision-making subjects and compare the outcomes of each method to understand how these methods perform in SPS problems.In this study,the best–worst method was applied to determine the weights of criteria.Four approaches for ELECTRE-TRI and 15 approaches for FlowSort were considered.Finally,19 different approaches were considered to select stocks from a large pool of stocks.Results indicated that the model parameter should be properly defined to minimize inconsistencies and improve the power of the model.展开更多
The environmental impact of maritime transport has now become a relevant issue in sustainable policy formulation and has attracted increasing interest from academia.For the sustainable development of maritime transpor...The environmental impact of maritime transport has now become a relevant issue in sustainable policy formulation and has attracted increasing interest from academia.For the sustainable development of maritime transport,International Maritime Organization stipulates that the sulfur content of ship emissions will reach 0.5 from 2020.With the approaching of the stipulated implementation date,shipowners need to adopt scientific methods to make decision on low sulfur fuel.In this study,we applied a prospect theory based hesitant fuzzy multi-criteria decision-making model to obtain the optimal decision of low Sulphur marine fuel.For this purpose,the hesitant fuzzy decision matrix is established to collect expert opinions,the maximizing deviation method is adopted to determine criteria weights.According to calculate the Euclidean distance from the reference points,we obtain the comprehensive prospect values of alternatives.Lastly,a case study is carried out to illustrate the significance and effectiveness of the proposed methodology.The innovation of this study is that it is the first-time adopting prospect theory and hesitate fuzzy sets to multi-criteria decision making for low Sulphur marine fuel,which provides an effective decision model for shipping companies under Low Sulphur regulations,and can also be extended to other industries.展开更多
In this article, we are interested in solving a combinatorial optimization problem, the shortest path problem in a multi-attribute graph, by the out-ranking methods. A multi-attribute graph has simultaneously qualitat...In this article, we are interested in solving a combinatorial optimization problem, the shortest path problem in a multi-attribute graph, by the out-ranking methods. A multi-attribute graph has simultaneously qualitative and quantitative criteria. This situation gives rise to incomparable paths thus forming the Pareto front. Outranking methods in Multi-criteria Decision Making (MCDM) are the only methods that can take into account this situation (incomparability of actions). After presenting the categories of Multi-criteria Decision Making (MCDM) and the difficulties related to the problems of the shortest paths, we propose an evolutionary algorithm based on the outranking methods to solve the problem of finding “best” paths in a multi-attribute graph with non-additive criteria. Our approach is based on the exploration of induced subgraphs of the outranking graph. Properties have been established to serve as algorithmic basis. Numerical experiments have been carried out and the results presented in this article.展开更多
Project portfolio management is a major challenge for some organizations.In most organizations,there are a large number of projects active at the same time,some not necessarily delivering value or not aligned with the...Project portfolio management is a major challenge for some organizations.In most organizations,there are a large number of projects active at the same time,some not necessarily delivering value or not aligned with their strategic goals.Also universities face a lot of uncertainties when selecting and prioritizing the projects that make up their portfolio.In addition,the achievement of those who are aligned with the strategy of the university becomes a great challenge.So to ensure good project portfolio management,the implementation of selection and prioritization methods and processes becomes important.For the project portfolio management to be effective,it is necessary to establish a structured method adapted to the needs and strategy of the university.In this context,this paper proposes a method for selecting and prioritizing projects within the framework of the portfolio management dedicated to universities,which can promote harmony between the university’s strategy,the needs and the priority objectives for enable better decision-making.This method is based on the processes of the COBIT 5 good practice framework,and on the multi-criteria decision-making methods AHP,TOPSIS and the WSM technique,thus,it proposes seven project selection criteria based on the five axes IT governance strategies and two catalysts derived from COBIT 5 enablers.The evaluation and validation of this method was applied in the portfolio management of the Abdelmalek Essaadi Moroccan University(AUE).The result shows that this proposed method has made it possible to make a better selection and prioritization of the portfolio of projects of Abdelmleek Essaadi University having the most value.展开更多
基金supported by the National Natural Science Foundation of China (7087111770571086)
文摘An extended compromise ratio method(CRM) based on fuzzy distances is developed to solve fuzzy multi-attribute group decision making problems in which weights of attributes and ratings of alternatives on attributes are expressed with values of linguistic variables parameterized using triangular fuzzy numbers.A compromise solution is determined by introducing the ranking index based on the concept that the chosen alternative should be as close as possible to the positive ideal solution and as far away from the negative ideal solution as possible simultaneously.This proposed method is compared with other existing methods to show its feasibility and effectiveness and illustrated with an example of the military route selection problem as one of the possible applications.
文摘Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.
基金supported by the National Natural Science Foundation of China(71271116)
文摘The VIKOR method is a multi-criteria decision making aid, which employs linear normalization to offer compromise solu- tions and has been successfully applied to various group decision making problems. However, the conventional VIKOR techniques used to integrate group judgments and the information loss arising from defuzzification are problematic and distort final outcomes. An improved integration method, which is optimization-based, is proposed. And it can handle fuzzy criteria values and weights. The precondition for accurately defuzzifying triangular fuzzy num- bers is identified. Several effective defuzzification procedures are proposed to improve the extant VIKOR, and a comprehensive evaluation framework is offered to aid multi-criteria group decision making. Finally, a numerical example is provided to illustrate the practicability of the proposed method.
基金supported by the National Natural Science Foundation of China (60904059 60975049)+1 种基金the Philosophy and Social Science Foundation of Hunan Province (2010YBA104)the National High Technology Research and Development Program of China (863 Program)(2009AA04Z107)
文摘A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.
文摘Molecular microbiological methods, such as competetive PCR, real-time PCR, denaturing gradient gel electrophoresis (DGGE) and large-scale parallel-pyrosequencing, require the extraction of sufficient quantity of high quality DNA from microbiologically and chemically complex matrices. Due to difficulties in the field to standardize/select the optimum DNA preservation-extraction methods in view of laboratories differences, this article attempts to present a straight-forward mathematical framework for comparing some of the most commonly used methods. To this end, as a case study, the problem of selecting an optimum sample preservation-DNA extraction strategy for obtaining total bacterial DNA from swine feces was considered. Two sample preservation methods (liquid nitrogen and RNAlater?) and seven extraction techniques were paired and compared under six quantitative DNA analysis criteria: yield of extraction, purity of extracted DNA (A260/280 and A 260/230 ratios), duration of extraction, degradation degree of DNA, and cost. From a practical point of view, it is unlikely that a single sample preservation-DNA extraction strategy can be optimum for all selected criteria. Hence, a systematic multi-criteria decision-making (MCDM) approach was used to compare the methods. As a result, the ZR Fecal DNA MiniPrepTM DNA extraction kit for samples preserved either with liquid nitrogen or RNAlater? were identified as potential optimum solutions for obtaining total bacterial DNA from swine feces. Considering the need for practicality for in situ applications, we would recommend liquid nitrogen as sample preservation method, along with the ZR Fecal DNA MiniPrepTM kit. Total bacterial DNA obtained by this strategy can be suitable for downstream PCR-based DNA analyses of swine feces.
文摘Nowadays,the use of renewable energies,especially wind,solar,and biomass,is essential as an effective solution to address global environmental and economic challenges.Therefore,the current study examines the energy-economic-environmental analysis of off-grid electricity generation systems using solar panels,wind turbines,and biomass generators in various weather conditions in Iran.Simulations over 25 years were conducted using HOMER v2.81 software,aiming to determine the potential of each region and find the lowest cost of electricity production per kWh.In the end,to identify the most suitable location,the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method was employed to rank different stations based on simulation output parameters and some other influential factors.Considering the evaluation of various parameters,the stations in Yazd,Marand,and Dezful achieved the best results,while the stations in Ramsar,Shahrekord,and Gonbad presented the least favorable outcomes.In Yazd,the wind turbine is an economic priority,and a 100 kW wind turbine is utilized in the optimal system.In Yazd,where the simultaneous use of renewable energies is most prominent,the lowest pollutant production occurred with a quantity of 1174 kg/year.Annual energy losses are highest in Jask station and lowest in Yazd.
基金funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 792037support from Department of Energy and Power Systems of University of Zagreb Faculty of Electrical Engineering and Computing.
文摘Deep geothermal energy presents large untapped renewable energy potential could significantly contribute to global energy needs. However, developing geothermal projects involves uncertainties regarding adequate geothermal brine extraction and huge costs related to preparation phases and consequently drilling and stimulation activities. Therefore, evaluating utilization alternatives of such projects is a complex decision-making problem effectively addressed using multi-criteria decision-making (MCDM) methods. This study introduces the MCDM method utilizing analytic hierarchy process (AHP) and weighted decision matrix (WDM) to assess different utilization alternatives (electricity generation, direct heat use and cogeneration). The AHP method determines the weight of each criterion and sub-criterion, while the WDM calculates the final project grade. Five criteria groups - technological, geological, economic, societal and environmental – comprising twenty-eight influencing factors were selected and used for the assessment of investment in Enhanced Geothermal Systems (EGS) projects. The AHP-WDM method was used by 38 experts from six categories: industry, educational institution, research and technology organization (RTO), small- and medium-sized enterprises (SME), local community and other. These diverse expert inputs aimed to capture varying perspectives and knowledge influence investment decisions in geothermal energy. The results were analysed accordingly. The results underscore the importance of incorporating different viewpoints to develop robust, credible, and effective investment strategies for EGS projects. Therefore, this method will contribute to more efficient EGS project development, enabling thus a greater penetration of the EGS into the market. Additionally, the proposed AHP-WDM method was implemented for a case study examining two locations. Locations were assessed and compared on scenario-based evaluation. The results confirmed the method's adequacy for assessing various end uses and comparing project feasibility across different locations.
文摘A method for ranking complementary judgment matrixes with traspezoidal fuzzy numbers based on Hausdorff metric distance and fuzzy compromise decision approach is proposed. With regard to fuzzy number complementary judgment matrixes given by a decider group whose members have various weights, the expert's information was aggregated first by means of simple weight average(SWA) method and Bonissone calculational method. Hence a matrix including all the experts' preference information was got. Then the matrix' column members were added up and the fuzzy evaluation values of the alternatives were got. Lastly, the Hausdorff metric distance and fuzzy compromise decision approach were used to rank the fuzzy evaluation values and then the ranking values of all the alternatives were got. Because exact numbers and triangular fuzzy numbers could all be transformed into trapezoidal fuzzy numbers, the method developed can rank complementary judgment matrixes with trapezoidal fuzzy numbers, triangular fuzzy numbers and exact numbers as well. An illustrative example is also given to verify the developed method and to demonstrate its feasibility and practicality.
文摘One of the most critical and complicated steps in mine design is a selection of suitable mining method based upon geological,geotechnical,geographical,safety and economical parameters.The aim of this study is developing a Monte Carlo simulation to selection the optimum mining method by using effective and major criteria and at the same time,taking subjective judgments of decision makers into consideration.Proposed approach is based on the combination of Monte Carlo simulation with conventional Analytic Hierarchy Process(AHP).Monte Carlo simulation is used to determine the confdence level of each alternative’s score,is calculated by AHP,with the respect to the variance of decision makers’opinion.The proposed method is applied for Jajarm Bauxite Mine in Iran and eventually the most appropriate mining methods for this mine are ranked.
文摘Evaluation model was proposed which refers to fuzzy formalism of the personnel management issues taking account their specific characteristics. Application of TOPSIS (technique for order Performance by similarity to ideal solution) method for evaluation and regulation of alternatives based on hierarchically structured criteria of qualitative character by multiple experts to intellectually support decisions made in staff management issues is reviewed in the article. Candidate selection experiment based on criteria system formed using TOPSIS method for evaluation of candidates during solution of hiring problems reviewed and obtained results were compared with results obtained using Matlab program package.
文摘In recent years,multi-criteria sorting problems have become an interesting topic for researchers working on multi-criteria decision-making.ELimination and Choice Expressing REality(ELECTRE)-TRI and FlowSort are well-known approaches suggested for such a classification.The current study aimed to implement ELECTRE-TRI and FlowSort methods in the stock portfolio selection(SPS)as one of the most popular and important decision-making subjects and compare the outcomes of each method to understand how these methods perform in SPS problems.In this study,the best–worst method was applied to determine the weights of criteria.Four approaches for ELECTRE-TRI and 15 approaches for FlowSort were considered.Finally,19 different approaches were considered to select stocks from a large pool of stocks.Results indicated that the model parameter should be properly defined to minimize inconsistencies and improve the power of the model.
文摘The environmental impact of maritime transport has now become a relevant issue in sustainable policy formulation and has attracted increasing interest from academia.For the sustainable development of maritime transport,International Maritime Organization stipulates that the sulfur content of ship emissions will reach 0.5 from 2020.With the approaching of the stipulated implementation date,shipowners need to adopt scientific methods to make decision on low sulfur fuel.In this study,we applied a prospect theory based hesitant fuzzy multi-criteria decision-making model to obtain the optimal decision of low Sulphur marine fuel.For this purpose,the hesitant fuzzy decision matrix is established to collect expert opinions,the maximizing deviation method is adopted to determine criteria weights.According to calculate the Euclidean distance from the reference points,we obtain the comprehensive prospect values of alternatives.Lastly,a case study is carried out to illustrate the significance and effectiveness of the proposed methodology.The innovation of this study is that it is the first-time adopting prospect theory and hesitate fuzzy sets to multi-criteria decision making for low Sulphur marine fuel,which provides an effective decision model for shipping companies under Low Sulphur regulations,and can also be extended to other industries.
文摘In this article, we are interested in solving a combinatorial optimization problem, the shortest path problem in a multi-attribute graph, by the out-ranking methods. A multi-attribute graph has simultaneously qualitative and quantitative criteria. This situation gives rise to incomparable paths thus forming the Pareto front. Outranking methods in Multi-criteria Decision Making (MCDM) are the only methods that can take into account this situation (incomparability of actions). After presenting the categories of Multi-criteria Decision Making (MCDM) and the difficulties related to the problems of the shortest paths, we propose an evolutionary algorithm based on the outranking methods to solve the problem of finding “best” paths in a multi-attribute graph with non-additive criteria. Our approach is based on the exploration of induced subgraphs of the outranking graph. Properties have been established to serve as algorithmic basis. Numerical experiments have been carried out and the results presented in this article.
文摘Project portfolio management is a major challenge for some organizations.In most organizations,there are a large number of projects active at the same time,some not necessarily delivering value or not aligned with their strategic goals.Also universities face a lot of uncertainties when selecting and prioritizing the projects that make up their portfolio.In addition,the achievement of those who are aligned with the strategy of the university becomes a great challenge.So to ensure good project portfolio management,the implementation of selection and prioritization methods and processes becomes important.For the project portfolio management to be effective,it is necessary to establish a structured method adapted to the needs and strategy of the university.In this context,this paper proposes a method for selecting and prioritizing projects within the framework of the portfolio management dedicated to universities,which can promote harmony between the university’s strategy,the needs and the priority objectives for enable better decision-making.This method is based on the processes of the COBIT 5 good practice framework,and on the multi-criteria decision-making methods AHP,TOPSIS and the WSM technique,thus,it proposes seven project selection criteria based on the five axes IT governance strategies and two catalysts derived from COBIT 5 enablers.The evaluation and validation of this method was applied in the portfolio management of the Abdelmalek Essaadi Moroccan University(AUE).The result shows that this proposed method has made it possible to make a better selection and prioritization of the portfolio of projects of Abdelmleek Essaadi University having the most value.