The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents ...The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents can explore and summarize the environment to achieve autonomous deci-sions in the continuous state space and action space.In this paper,a cooperative defense with DDPG via swarms of unmanned aerial vehicle(UAV)is developed and validated,which has shown promising practical value in the effect of defending.We solve the sparse rewards problem of reinforcement learning pair in a long-term task by building the reward function of UAV swarms and optimizing the learning process of artificial neural network based on the DDPG algorithm to reduce the vibration in the learning process.The experimental results show that the DDPG algorithm can guide the UAVs swarm to perform the defense task efficiently,meeting the requirements of a UAV swarm for non-centralization,autonomy,and promoting the intelligent development of UAVs swarm as well as the decision-making process.展开更多
为提高多无人船编队系统的导航能力,提出了一种基于注意力机制的多智能体深度确定性策略梯度(ATMADDPG:Attention Mechanism based Multi-Agent Deep Deterministic Policy Gradient)算法。该算法在训练阶段,通过大量试验训练出最佳策略...为提高多无人船编队系统的导航能力,提出了一种基于注意力机制的多智能体深度确定性策略梯度(ATMADDPG:Attention Mechanism based Multi-Agent Deep Deterministic Policy Gradient)算法。该算法在训练阶段,通过大量试验训练出最佳策略,并在实验阶段直接使用训练出的最佳策略得到最佳编队路径。仿真实验将4艘相同的“百川号”无人船作为实验对象。实验结果表明,基于ATMADDPG算法的队形保持策略能实现稳定的多无人船编队导航,并在一定程度上满足队形保持的要求。相较于多智能体深度确定性策略梯度(MADDPG:Multi-Agent Depth Deterministic Policy Gradient)算法,所提出的ATMADDPG算法在收敛速度、队形保持能力和对环境变化的适应性等方面表现出更优越的性能,综合导航效率可提高约80%,具有较大的应用潜力。展开更多
基金supported by the Key Research and Development Program of Shaanxi(2022GY-089)the Natural Science Basic Research Program of Shaanxi(2022JQ-593).
文摘The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents can explore and summarize the environment to achieve autonomous deci-sions in the continuous state space and action space.In this paper,a cooperative defense with DDPG via swarms of unmanned aerial vehicle(UAV)is developed and validated,which has shown promising practical value in the effect of defending.We solve the sparse rewards problem of reinforcement learning pair in a long-term task by building the reward function of UAV swarms and optimizing the learning process of artificial neural network based on the DDPG algorithm to reduce the vibration in the learning process.The experimental results show that the DDPG algorithm can guide the UAVs swarm to perform the defense task efficiently,meeting the requirements of a UAV swarm for non-centralization,autonomy,and promoting the intelligent development of UAVs swarm as well as the decision-making process.