Suppose Ω belong to R^N(N≥3) is a smooth bounded domain,ξi∈Ω,0〈ai〈√μ,μ:=((N-1)/2)^2,0≤μi〈(√μ-ai)^2,ai〈bi〈ai+1 and pi:=2N/N-2(1+ai-bi)are the weighted critical Hardy-Sobolev exponents, i ...Suppose Ω belong to R^N(N≥3) is a smooth bounded domain,ξi∈Ω,0〈ai〈√μ,μ:=((N-1)/2)^2,0≤μi〈(√μ-ai)^2,ai〈bi〈ai+1 and pi:=2N/N-2(1+ai-bi)are the weighted critical Hardy-Sobolev exponents, i = 1, 2,..., k, k ≥ 2. We deal with the conditions that ensure the existence of positive solutions to the multi-singular and multi-critical elliptic problem ∑i=1^k(-div(|x-ξi|^-2ai△↓u)-μiu/|x-ξi|^2(1+ai)-u^pi-1/|x-ξi|^bipi)=0with Dirichlet boundary condition, which involves the weighted Hardy inequality and the weighted Hardy-Sobolev inequality. The results depend crucially on the parameters ai, bi and #i, i -- 1, 2,..., k.展开更多
基金supported partly by the National Natural Science Foundation of China (10771219)the Science Foundation of the SEAC of China (07ZN03)
文摘Suppose Ω belong to R^N(N≥3) is a smooth bounded domain,ξi∈Ω,0〈ai〈√μ,μ:=((N-1)/2)^2,0≤μi〈(√μ-ai)^2,ai〈bi〈ai+1 and pi:=2N/N-2(1+ai-bi)are the weighted critical Hardy-Sobolev exponents, i = 1, 2,..., k, k ≥ 2. We deal with the conditions that ensure the existence of positive solutions to the multi-singular and multi-critical elliptic problem ∑i=1^k(-div(|x-ξi|^-2ai△↓u)-μiu/|x-ξi|^2(1+ai)-u^pi-1/|x-ξi|^bipi)=0with Dirichlet boundary condition, which involves the weighted Hardy inequality and the weighted Hardy-Sobolev inequality. The results depend crucially on the parameters ai, bi and #i, i -- 1, 2,..., k.