期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Modal identification of multi-degree-of-freedom structures based on intrinsic chirp component decomposition method 被引量:1
1
作者 Sha WEI Shiqian CHEN +2 位作者 Zhike PENG Xingjian DONG Wenming ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第12期1741-1758,共18页
Modal parameter identification is a mature technology.However,there are some challenges in its practical applications such as the identification of vibration systems involving closely spaced modes and intensive noise ... Modal parameter identification is a mature technology.However,there are some challenges in its practical applications such as the identification of vibration systems involving closely spaced modes and intensive noise contamination.This paper proposes a new time-frequency method based on intrinsic chirp component decomposition(ICCD)to address these issues.In this method,a redundant Fourier model is used to ameliorate border distortions and improve the accuracy of signal reconstruction.The effectiveness and accuracy of the proposed method are illustrated using three examples:a cantilever beam structure with intensive noise contamination or environmental interference,a four-degree-of-freedom structure with two closely spaced modes,and an impact test on a cantilever rectangular plate.By comparison with the identification method based on the empirical wavelet transform(EWT),it is shown that the presented method is effective,even in a high-noise environment,and the dynamic characteristics of closely spaced modes are accurately determined. 展开更多
关键词 modal identification closely spaced mode TIME-FREQUENCY domain INTRINSIC CHIRP COMPONENT decomposition(ICCD) multi-degree-of-freedom(MDOF) system
下载PDF
A highly-efficient method for stationary response of multi-degree-of-freedom nonlinear stochastic systems
2
作者 Lincong CHEN J.Q.SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第6期967-982,共16页
Analytical and numerical studies of multi-degree-of-freedom(MDOF) nonlinear stochastic or deterministic dynamic systems have long been a technical challenge.This paper presents a highly-efficient method for determinin... Analytical and numerical studies of multi-degree-of-freedom(MDOF) nonlinear stochastic or deterministic dynamic systems have long been a technical challenge.This paper presents a highly-efficient method for determining the stationary probability density functions(PDFs) of MDOF nonlinear systems subjected to both additive and multiplicative Gaussian white noises. The proposed method takes advantages of the sufficient conditions of the reduced Fokker-Planck-Kolmogorov(FPK) equation when constructing the trial solution. The assumed solution consists of the analytically constructed trial solutions satisfying the sufficient conditions and an exponential polynomial of the state variables, and delivers a high accuracy of the solution because the analytically constructed trial solutions capture the main characteristics of the nonlinear system. We also make use of the concept from the data-science and propose a symbolic integration over a hypercube to replace the numerical integrations in a higher-dimensional space, which has been regarded as the insurmountable difficulty in the classical method of weighted residuals or stochastic averaging for high-dimensional dynamic systems. Three illustrative examples of MDOF nonlinear systems are analyzed in detail. The accuracy of the numerical results is validated by comparison with the Monte Carlo simulation(MCS) or the available exact solution. Furthermore, we also show the substantial gain in the computational efficiency of the proposed method compared with the MCS. 展开更多
关键词 stationary response multi-degree-of-freedom(MDOF)nonlinear system Fokker-Planck-Kolmogorov(FPK)equation least square method
下载PDF
A VHDL application for kinematic equation solutions of multi-degree-of-freedom systems
3
作者 Hüseyin Oktay ERKOL Hüseyin DEMíREL 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第12期1164-1173,共10页
As kinematic calculations are complicated, it takes a long time and is difficult to get the desired accurate result with a single processor in real-time motion control of multi-degree-of-freedom(MDOF) systems. Another... As kinematic calculations are complicated, it takes a long time and is difficult to get the desired accurate result with a single processor in real-time motion control of multi-degree-of-freedom(MDOF) systems. Another calculation unit is needed, especially with the increase in the degree of freedom. The main central processing unit(CPU) has additional loads because of numerous motion elements which move independently from each other and their closed-loop controls. The system designed is also complicated because there are many parts and cabling. This paper presents the design and implementation of a hardware that will provide solutions to these problems. It is realized using the Very High Speed Integrated Circuit Hardware Description Language(VHDL) and field-programmable gate array(FPGA). This hardware is designed for a six-legged robot and has been working with servo motors controlled via the serial port. The hardware on FPGA calculates the required joint angles for the feet positions received from the serial port and sends the calculated angels to the servo motors via the serial port. This hardware has a co-processor for the calculation of kinematic equations and can be used together with the equipment that would reduce the electromechanical mess. It is intended to be used as a tool which will accelerate the transition from design to application for robots. 展开更多
关键词 multi-degree-of-freedom systems KINEMATICS Co-processor Serial communication Six-legged robot
原文传递
Flexible Bio-tensegrity Manipulator with Multi-degree of Freedom and Variable Structure 被引量:8
4
作者 Dunwen Wei Tao Gao +2 位作者 Xiaojuan Mo Ruru Xi Cong Zhou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第1期83-93,共11页
Conventional manipulators with rigid structures and sti ness actuators have poor flexibility,limited obstacle avoidance capability,and constrained workspace.Some developed flexible or soft manipulators in recent years... Conventional manipulators with rigid structures and sti ness actuators have poor flexibility,limited obstacle avoidance capability,and constrained workspace.Some developed flexible or soft manipulators in recent years have the characteristics of infinite degrees of freedom,high flexibility,environmental adaptability,and extended manipulation capability.However,these existing manipulators still cannot achieve the shrinking motion and independent control of specified segments like the animals,which hinders their applications.In this paper,a flexible bio-tensegrity manipulator,inspired by the longitudinal and transversal muscles of octopus tentacles,was proposed to mimic the shrinking behavior and achieve the variable motion patterns of each segment.Such proposed manipulator uses the elastic spring as the backbone,which is driven by four cables and has one variable structure mechanism in each segment to achieve the independent control of each segment.The variable structure mechanism innovatively contains seven lock-release states to independently control the bending and shrinking motion of each segment.After the kinematic modeling and analysis,one prototype of such bionic flexible manipulator was built and the open-loop control method was proposed.Some proof-of-concept experiments,including the shrinking motion,bending motion,and variable structure motion,were carried out by controlling the length of four cables and changing the lock-release states of the variable structure mechanism,which validate the feasibility and validity of our proposed prototype.Meanwhile,the experimental results show the flexible manipulator can accomplish the bending and shrinking motion with the relative error less than 6.8%through the simple independent control of each segment using the variable structure mechanism.This proposed manipulator has the features of controllable degree-of-freedom in each segment,which extend their environmental adaptability,and manipulation capability. 展开更多
关键词 Bio-tensegrity CABLE-DRIVEN actuation multi-degree-of-freedom(Multi-DoF) FLEXIBLE MANIPULATOR Variable structure mechanism
下载PDF
Error modeling and compensating of a novel 6-DOF aeroengine rotor docking equipment 被引量:2
5
作者 Tianyi ZHOU Hang GAO +2 位作者 Xuanping WANG Lun LI Qing LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第6期312-324,共13页
In the docking process of aeroengine rotor parts,docking accuracy that indicates the gaps between the end faces is strictly required.A key issue is improving docking accuracy using automated docking equipment.In this ... In the docking process of aeroengine rotor parts,docking accuracy that indicates the gaps between the end faces is strictly required.A key issue is improving docking accuracy using automated docking equipment.In this paper,a systematic study is carried out on the error modeling and compensation of a novel six-degrees-of-freedom(6-DOF)docking equipment for aeroengine rotors.First,a new model for indicating the main indexes of docking accuracy is proposed.Then,the error model of a specially designed 6-DOF docking equipment is established based on a modified Denavit Hartenberg method with five parameters.Subsequently,two error compensation methods are proposed.Based on the above models,a docking accuracy simulation algorithm is proposed using the Monte Carlo method.Finally,verification experiments are conducted.The results show that,for the maximum values and standard deviations of the gaps between the rotor end-faces in the actual and target positions and attitudes,i.e.,main indexes that represent docking accuracy,the deviation rates between the simulation and experimental results are less than20%.The modeling methods have referential significance.The decline rates of these values are 50–65%when using the two proposed compensation methods.The compensation methods significantly improve the docking accuracy. 展开更多
关键词 Accuracy analysis Aeroengine rotor DOCKING Error compensation Error models multi-degree-of-freedom structures
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部