D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated...D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated areas. First, we choose seismic attributes that are most sensitive to CBM content changes with the guidance of CBM content measured at well sites. Then the selected seismic attributes are fused using D-S evidence theory and the fusion results are used to predict CBM-enriched area. The application shows that the predicted CBM content and the measured values are basically consistent. The results indicate that using D-S evidence theory in seismic multi-attribute fusion to predict CBM-enriched areas is feasible.展开更多
Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough se...Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough sets.First,we present belief and plausibility functions in covering information systems and study their properties.With these measures we characterize lower and upper approximation operators and attribute reductions in covering information systems and decision systems respectively.With these discussions we propose a basic framework of numerical characterizations of covering rough sets.展开更多
In the last few years, cloud computing as a new computing paradigm has gone through significant development, but it is also facing many problems. One of them is the cloud service selection problem. As increasingly boo...In the last few years, cloud computing as a new computing paradigm has gone through significant development, but it is also facing many problems. One of them is the cloud service selection problem. As increasingly boosting cloud services are offered through the internet and some of them may be not reliable or even malicious, how to select trustworthy cloud services for cloud users is a big challenge. In this paper, we propose a multi-dimensional trust-aware cloud service selection mechanism based on evidential reasoning(ER) approach that integrates both perception-based trust value and reputation based trust value, which are derived from direct and indirect trust evidence respectively, to identify trustworthy services. Here, multi-dimensional trust evidence, which reflects the trustworthiness of cloud services from different aspects, is elicited in the form of historical users feedback ratings. Then, the ER approach is applied to aggregate the multi-dimensional trust ratings to obtain the real-time trust value and select the most trustworthy cloud service of certain type for the active users. Finally, the fresh feedback from the active users will update the trust evidence for other service users in the future.展开更多
基金supported by the National Basic Research Program of China (973 Program) (No. 2009CB219603)Key Special National Project (No. 2008ZX05035)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated areas. First, we choose seismic attributes that are most sensitive to CBM content changes with the guidance of CBM content measured at well sites. Then the selected seismic attributes are fused using D-S evidence theory and the fusion results are used to predict CBM-enriched area. The application shows that the predicted CBM content and the measured values are basically consistent. The results indicate that using D-S evidence theory in seismic multi-attribute fusion to predict CBM-enriched areas is feasible.
基金supported by a grant of NSFC(70871036)a grant of National Basic Research Program of China(2009CB219801-3)
文摘Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough sets.First,we present belief and plausibility functions in covering information systems and study their properties.With these measures we characterize lower and upper approximation operators and attribute reductions in covering information systems and decision systems respectively.With these discussions we propose a basic framework of numerical characterizations of covering rough sets.
基金supported by National Natural Science Foundation of China(Nos.71131002,71071045,71231004 and 71201042)
文摘In the last few years, cloud computing as a new computing paradigm has gone through significant development, but it is also facing many problems. One of them is the cloud service selection problem. As increasingly boosting cloud services are offered through the internet and some of them may be not reliable or even malicious, how to select trustworthy cloud services for cloud users is a big challenge. In this paper, we propose a multi-dimensional trust-aware cloud service selection mechanism based on evidential reasoning(ER) approach that integrates both perception-based trust value and reputation based trust value, which are derived from direct and indirect trust evidence respectively, to identify trustworthy services. Here, multi-dimensional trust evidence, which reflects the trustworthiness of cloud services from different aspects, is elicited in the form of historical users feedback ratings. Then, the ER approach is applied to aggregate the multi-dimensional trust ratings to obtain the real-time trust value and select the most trustworthy cloud service of certain type for the active users. Finally, the fresh feedback from the active users will update the trust evidence for other service users in the future.