Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outl...Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments.展开更多
针对点云数据中噪声点的剔除问题,提出了一种基于改进DBSCAN(density-based spatial clustering of applications with noise)算法的多尺度点云去噪方法。应用统计滤波对孤立离群点进行预筛选,去除点云中的大尺度噪声;对DBSCAN算法进行...针对点云数据中噪声点的剔除问题,提出了一种基于改进DBSCAN(density-based spatial clustering of applications with noise)算法的多尺度点云去噪方法。应用统计滤波对孤立离群点进行预筛选,去除点云中的大尺度噪声;对DBSCAN算法进行优化,减少算法时间复杂度和实现参数的自适应调整,以此将点云分为正常簇、疑似簇及异常簇,并立即去除异常簇;利用距离共识评估法对疑似簇进行精细判定,通过计算疑似点与其最近的正常点拟合表面之间的距离,判定其是否为异常,有效保持了数据的关键特征和模型敏感度。利用该方法对两个船体分段点云进行去噪,并与其他去噪算法进行对比,结果表明,该方法在去噪效率和特征保持方面具有优势,精确地保留了点云数据的几何特性。展开更多
Automatic road detection, in dense urban areas, is a challenging application in the remote sensing community. This is mainly because of physical and geometrical variations of road pixels, their spectral similarity to ...Automatic road detection, in dense urban areas, is a challenging application in the remote sensing community. This is mainly because of physical and geometrical variations of road pixels, their spectral similarity to other features such as buildings, parking lots and sidewalks, and the obstruction by vehicles and trees. These problems are real obstacles in precise detection and identification of urban roads from high-resolution satellite imagery. One of the promising strategies to deal with this problem is using multi-sensors data to reduce the uncertainties of detection. In this paper, an integrated object-based analysis framework was developed for detecting and extracting various types of urban roads from high-resolution optical images and Lidar data. The proposed method is designed and implemented using a rule-oriented approach based on a masking strategy. The overall accuracy (OA) of the final road map was 89.2%, and the kappa coefficient of agreement was 0.83, which show the efficiency and performance of the method in different conditions and interclass noises. The results also demonstrate the high capability of this object-based method in simultaneous identification of a wide variety of road elements in complex urban areas using both high-resolution satellite images and Lidar data.展开更多
Recently, sequence anomaly detection has been widely used in many fields. Sequence data in these fields are usually multi-dimensional over the data stream. It is a challenge to design an anomaly detection method for a...Recently, sequence anomaly detection has been widely used in many fields. Sequence data in these fields are usually multi-dimensional over the data stream. It is a challenge to design an anomaly detection method for a multi-dimensional sequence over the data stream to satisfy the requirements of accuracy and high speed. It is because:(1) Redundant dimensions in sequence data and large state space lead to a poor ability for sequence modeling;(2) Anomaly detection cannot adapt to the high-speed nature of the data stream, especially when concept drift occurs, and it will reduce the detection rate. On one hand, most existing methods of sequence anomaly detection focus on the single-dimension sequence. On the other hand, some studies concerning multi-dimensional sequence concentrate mainly on the static database rather than the data stream. To improve the performance of anomaly detection for a multi-dimensional sequence over the data stream, we propose a novel unsupervised fast and accurate anomaly detection(FAAD) method which includes three algorithms. First, a method called "information calculation and minimum spanning tree cluster" is adopted to reduce redundant dimensions. Second, to speed up model construction and ensure the detection rate for the sequence over the data stream, we propose a method called"random sampling and subsequence partitioning based on the index probabilistic suffix tree." Last, the method called "anomaly buffer based on model dynamic adjustment" dramatically reduces the effects of concept drift in the data stream. FAAD is implemented on the streaming platform Storm to detect multi-dimensional log audit data.Compared with the existing anomaly detection methods, FAAD has a good performance in detection rate and speed without being affected by concept drift.展开更多
基金Project(61362021)supported by the National Natural Science Foundation of ChinaProject(2016GXNSFAA380149)supported by Natural Science Foundation of Guangxi Province,China+1 种基金Projects(2016YJCXB02,2017YJCX34)supported by Innovation Project of GUET Graduate Education,ChinaProject(2011KF11)supported by the Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education,China
文摘Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments.
文摘针对点云数据中噪声点的剔除问题,提出了一种基于改进DBSCAN(density-based spatial clustering of applications with noise)算法的多尺度点云去噪方法。应用统计滤波对孤立离群点进行预筛选,去除点云中的大尺度噪声;对DBSCAN算法进行优化,减少算法时间复杂度和实现参数的自适应调整,以此将点云分为正常簇、疑似簇及异常簇,并立即去除异常簇;利用距离共识评估法对疑似簇进行精细判定,通过计算疑似点与其最近的正常点拟合表面之间的距离,判定其是否为异常,有效保持了数据的关键特征和模型敏感度。利用该方法对两个船体分段点云进行去噪,并与其他去噪算法进行对比,结果表明,该方法在去噪效率和特征保持方面具有优势,精确地保留了点云数据的几何特性。
文摘Automatic road detection, in dense urban areas, is a challenging application in the remote sensing community. This is mainly because of physical and geometrical variations of road pixels, their spectral similarity to other features such as buildings, parking lots and sidewalks, and the obstruction by vehicles and trees. These problems are real obstacles in precise detection and identification of urban roads from high-resolution satellite imagery. One of the promising strategies to deal with this problem is using multi-sensors data to reduce the uncertainties of detection. In this paper, an integrated object-based analysis framework was developed for detecting and extracting various types of urban roads from high-resolution optical images and Lidar data. The proposed method is designed and implemented using a rule-oriented approach based on a masking strategy. The overall accuracy (OA) of the final road map was 89.2%, and the kappa coefficient of agreement was 0.83, which show the efficiency and performance of the method in different conditions and interclass noises. The results also demonstrate the high capability of this object-based method in simultaneous identification of a wide variety of road elements in complex urban areas using both high-resolution satellite images and Lidar data.
基金Project supported by the National Key R&D Program of China(No.2016YFB1000101)the National Natural Science Foundation of China(Nos.61379052 and 61502513)+1 种基金the Natural Science Foundation for Distinguished Young Scholars of Hunan Province,China(No.14JJ1026)the Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20124307110015)
文摘Recently, sequence anomaly detection has been widely used in many fields. Sequence data in these fields are usually multi-dimensional over the data stream. It is a challenge to design an anomaly detection method for a multi-dimensional sequence over the data stream to satisfy the requirements of accuracy and high speed. It is because:(1) Redundant dimensions in sequence data and large state space lead to a poor ability for sequence modeling;(2) Anomaly detection cannot adapt to the high-speed nature of the data stream, especially when concept drift occurs, and it will reduce the detection rate. On one hand, most existing methods of sequence anomaly detection focus on the single-dimension sequence. On the other hand, some studies concerning multi-dimensional sequence concentrate mainly on the static database rather than the data stream. To improve the performance of anomaly detection for a multi-dimensional sequence over the data stream, we propose a novel unsupervised fast and accurate anomaly detection(FAAD) method which includes three algorithms. First, a method called "information calculation and minimum spanning tree cluster" is adopted to reduce redundant dimensions. Second, to speed up model construction and ensure the detection rate for the sequence over the data stream, we propose a method called"random sampling and subsequence partitioning based on the index probabilistic suffix tree." Last, the method called "anomaly buffer based on model dynamic adjustment" dramatically reduces the effects of concept drift in the data stream. FAAD is implemented on the streaming platform Storm to detect multi-dimensional log audit data.Compared with the existing anomaly detection methods, FAAD has a good performance in detection rate and speed without being affected by concept drift.