Since its inception in the 1970s,multi-dimensional magnetic resonance(MR)has emerged as a powerful tool for non-invasive investigations of structures and molecular interactions.MR spectroscopy beyond one dimension all...Since its inception in the 1970s,multi-dimensional magnetic resonance(MR)has emerged as a powerful tool for non-invasive investigations of structures and molecular interactions.MR spectroscopy beyond one dimension allows the study of the correlation,exchange processes,and separation of overlapping spectral information.The multi-dimensional concept has been re-implemented over the last two decades to explore molecular motion and spin dynamics in porous media.Apart from Fourier transform,methods have been developed for processing the multi-dimensional time-domain data,identifying the fluid components,and estimating pore surface permeability via joint relaxation and diffusion spectra.Through the resolution of spectroscopic signals with spatial encoding gradients,multi-dimensional MR imaging has been widely used to investigate the microscopic environment of living tissues and distinguish diseases.Signals in each voxel are usually expressed as multi-exponential decay,representing microstructures or environments along multiple pore scales.The separation of contributions from different environments is a common ill-posed problem,which can be resolved numerically.Moreover,the inversion methods and experimental parameters determine the resolution of multi-dimensional spectra.This paper reviews the algorithms that have been proposed to process multidimensional MR datasets in different scenarios.Detailed information at the microscopic level,such as tissue components,fluid types and food structures in multi-disciplinary sciences,could be revealed through multi-dimensional MR.展开更多
A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways,...A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways, a specically designed database was developed via the processes including data filtering, wavelet analysis and clustering. The relativity based weighted Euclidean distance was used as the distance metric to identify the K groups of nearest data series. Then, a K-NN nonparametric regression model was built to predict the average travel speeds up to 6 min into the future. Several randomly selected travel speed data series, collected from the floating car data (FCD) system, were used to validate the model. The results indicate that using the FCD, the model can predict average travel speeds with an accuracy of above 90%, and hence is feasible and effective.展开更多
To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mo...To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.展开更多
The question of how to choose a copula model that best fits a given dataset is a predominant limitation of the copula approach, and the present study aims to investigate the techniques of goodness-of-fit tests for mul...The question of how to choose a copula model that best fits a given dataset is a predominant limitation of the copula approach, and the present study aims to investigate the techniques of goodness-of-fit tests for multi-dimensional copulas. A goodness-of-fit test based on Rosenblatt's transformation was mathematically expanded from two dimensions to three dimensions and procedures of a bootstrap version of the test were provided. Through stochastic copula simulation, an empirical application of historical drought data at the Lintong Gauge Station shows that the goodness-of-fit tests perform well, revealing that both trivariate Gaussian and Student t copulas are acceptable for modeling the dependence structures of the observed drought duration, severity, and peak. The goodness-of-fit tests for multi-dimensional copulas can provide further support and help a lot in the potential applications of a wider range of copulas to describe the associations of correlated hydrological variables. However, for the application of copulas with the number of dimensions larger than three, more complicated computational efforts as well as exploration and parameterization of corresponding copulas are required.展开更多
The increasing popularity of e-commerce brings large volumes of sporadic orders from different customers,which have to be handled by freight trucks and distribution centers. To improve the level of service and reduce ...The increasing popularity of e-commerce brings large volumes of sporadic orders from different customers,which have to be handled by freight trucks and distribution centers. To improve the level of service and reduce the total shipping cost as well as traffic congestions in urban area, flexible methods and optimal vehicle routing strategies should be adopted to improve the efficiency of distribution effort. An optimization solution for vehicle routing and scheduling problem with time window for sporadic orders (VRPTW- S) was provided based on time-dependent travel time extracted from floating car data (FCD) with ArcGIS platform. A VRPTW-S model derived from the traditional vehicle routing problem was proposed, in which uncertainty of customer orders and travel time were considered. Based on this model, an advanced vehicle routing algorithm was designed to solve the problem. A case study of Shenzhen, Guangdong province, China, was conducted to demonstrate the vehicle operation flow,in which process of FCD and efficiency of delivery systems under different situations were discussed. The final results demonstrated a good performance of application of time-dependent travel time information using FCD in solving vehicle routing problems.展开更多
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode...Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.展开更多
With the expansion of urban area and development of taxi system,problems arise,such as low operation efficiency,high taxi idling rate,and long passenger waiting-time. Although various studies have been conducted,only ...With the expansion of urban area and development of taxi system,problems arise,such as low operation efficiency,high taxi idling rate,and long passenger waiting-time. Although various studies have been conducted,only limited overview of the factors towards urban taxi system has been provided. Consequently,a comprehensive evaluation of taxi system is essential for the urban planner to analyze the current situation and take effective measures. This paper,by using Floating Car Data( FCD),proposes a Comprehensive Taxi Assessment Index( CTAI) to quantify the quality of existing urban taxi system with the assistance of Geographic Information System( GIS) technology. The proposed index system extracts and classifies key factors,reflecting the taxi system from the perspectives of operation efficiency,customer and taxi-driver satisfaction. The system contributes to improving the organization and operation of urban taxi system. Based on the data obtained from the city of Shenzhen,Guangdong Province,China,for both weekday and weekends( Dec.,2011),the proposed CTAI was illustrated by using the Principal Component Analysis( PCA) with ArcGIS 10. 0 platform. The results indicate that the system provides a good multi-dimensional view to delve into the existing urban taxi operation, thus to point out the most sensitive indices towards the entire system,which consequently provides guidelines for future improvement and management of urban taxi system.展开更多
After introducing the principle of float car data (FCD), this paper gives the primary flow of pre-handing and map- matching of the FCD. After analyzing the percentage of coverage of FCD on the road network, large quan...After introducing the principle of float car data (FCD), this paper gives the primary flow of pre-handing and map- matching of the FCD. After analyzing the percentage of coverage of FCD on the road network, large quantity of heritage database of routing status is used to estimate the routing velocity when lack of FCD on parts road segments. Multi liner regression model is then put forwarded by considering the spatial correlativity among the road network, and some model parameters are deduced when time series is classified in day and week. Besides, error of velocity probability and error of status probability are achieved based on the result from field testing while the feasibility and reliability of the velocity estimation model is obtained as well. Finally, as a case study in Shanghai center area, the whole routing velocity in the road network is estimated and published in real time.展开更多
Speed is of great importance to the safety level of a road. Speed choice is strongly influenced by the road environment and the drivers' assessment of safe speed level at a specific location. This paper presents an a...Speed is of great importance to the safety level of a road. Speed choice is strongly influenced by the road environment and the drivers' assessment of safe speed level at a specific location. This paper presents an analysis of the relationships between speed and road characteristics and speed and driver characteristics. The analysis is based on big data on speed and driver characteristics combined with data on road characteristics on 49 secondary rural two-lane roads in Denmark. Data is modelled using multivariate linear regression. The results show a primarily influence from road and shoulder width, the extent of road markings and the section lengths on speed. Secondly, they also show the presence of woodland and intersections influencing speed as gender, age of vehicle and time of day do.展开更多
In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and impl...In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and implementing a method by combining classical Apriori algorithm with the model, digging out frequent items of elevator accident data to explore the main reasons for the occurrence of elevator accidents. In addition, a collaborative edge model of elevator accidents is set to achieve data sharing, making it possible to check the detail of each cause to confirm the causes of elevator accidents. Lastly the association rules are applied to find the law of elevator Accidents.展开更多
Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and d...Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and distance measure, and were proved. To calculate the degree of similarity of discrete data, relative degree between data and total distribution was obtained. Discrete data similarity measure was completed with combination of mentioned relative degrees. Power interconnected system with multi characteristics was considered to apply discrete similarity measure. Naturally, similarity measure was extended to multi-dimensional similarity measure case, and applied to bus clustering problem.展开更多
Although China’s urban floating population is mainly concentrated in developed cities,from the central and western cities to the eastern developed cities,but the characteristics of the floating population in differen...Although China’s urban floating population is mainly concentrated in developed cities,from the central and western cities to the eastern developed cities,but the characteristics of the floating population in different cities are significantly different.This paper systematically investigates the spatiotemporal characteristics and influencing factors of the floating population in different levels of cities.The results show that the regional imbalance to further strengthen,accumulation and dispersion trend has become increasingly obvious,liquidity is positively correlated and city level scale,and urban agglomeration and the core city is still polarization center of floating population.Flow range is closely related to urban hierarchy:the higher the intra-urban grade,the more tend to inter-provincial flow;the lower the city grade,the more tend to intra-urban mobility.Short-term(1-2 years)and long-term(more than 7 years)flow-time coexist.The short-term liquidity increases with the city grade,and the long-term liquidity decreases with the city level.Farmers are still the main body of the floating population.Younger age,lower education level,low-skilled,high gender ratio employees are the most basic demographic characteristics of the floating population,although there are differences between different cities.The main reason for affecting the floating population is seeking jobs and doing business.展开更多
Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outl...Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments.展开更多
A model that rapidly predicts the density components of raw coal is described.It is based on a threegrade fast float/sink test.The recent comprehensive monthly floating and sinking data are used for comparison.The pre...A model that rapidly predicts the density components of raw coal is described.It is based on a threegrade fast float/sink test.The recent comprehensive monthly floating and sinking data are used for comparison.The predicted data are used to draw washability curves and to provide a rapid evaluation of the effect from heavy medium induced separation.Thirty-one production shifts worth of fast float/sink data and the corresponding quick ash data are used to verify the model.The results show a small error with an arithmetic average of 0.53 and an absolute average error of 1.50.This indicates that this model has high precision.The theoretical yield from the washability curves is 76.47% for the monthly comprehensive data and 81.31% using the model data.This is for a desired cleaned coal ash of 9%.The relative error between these two is 6.33%,which is small and indicates that the predicted data can be used to rapidly evaluate the separation effect of gravity separation equipment.展开更多
为提高浮动车数据中异常数据检测能力及不同载客状态下的模型检测分析能力,提出基于S-DTA-IIForest(Summation&Difference Third Order Average&Improvement-Isolation Forest)的浮动车数据异常检测算法。构建由相邻两项求和(S...为提高浮动车数据中异常数据检测能力及不同载客状态下的模型检测分析能力,提出基于S-DTA-IIForest(Summation&Difference Third Order Average&Improvement-Isolation Forest)的浮动车数据异常检测算法。构建由相邻两项求和(S)、三阶求和平均差分(DTA)的二维度空间SDTA特征向量;提出差额累计更新和动态区分辨识的改进孤立森林IIForest算法,通过设置停止阈值参数,避免当出现新样本异常值分数大于停止阈值时,仅更新样本不更新孤立森林模型的问题,设计每个二叉树区分辨识度参数,区分辨识度位于停止区间时停止二叉树生长,提高算法收敛性能,以ROC(Receiver Operating Characteristic)曲线下面积AUC(Area Under ROC Cure)、F1-score为指标对模型精度进行对比分析,并以重庆市中心城区学府大道开展实例验证。结果表明:本文S-DTA-IIForest组合算法AUC、F1-score分别为86.63%、0.89,AUC较传统孤立森林IForest(Isolation Forest)提高32.4%,运行效率提高1.29%,具有收敛速度更快、精度更高的优势,载客条件下模型AUC、F1-score较未载客分别提高7.7%、10.8%,组合算法对载客数据有更高的检测精度,且未载客状态数据异常率较载客状态增加71.4%,未载客数据异常率更高。展开更多
What can occur within a mere second?A bee can flutter its wings 240 times;over 4,000 stars can appear in the vast expanse of the universe;and at Ya’an Big Data Industrial Park,125,000 photos are shared on the Interne...What can occur within a mere second?A bee can flutter its wings 240 times;over 4,000 stars can appear in the vast expanse of the universe;and at Ya’an Big Data Industrial Park,125,000 photos are shared on the Internet and zillions of floating-point operations are completed per second.What can occur within a mere second?A bee can flutter its wings 240 times;over 4,000 stars can appear in the vast expanse of the universe;and at Ya’an Big Data Industrial Park,125,000 photos are shared on the Internet and zillions of floating-point operations are completed per second.展开更多
基金supported by the National Natural Science Foundation of China(No.61901465,82222032,82172050).
文摘Since its inception in the 1970s,multi-dimensional magnetic resonance(MR)has emerged as a powerful tool for non-invasive investigations of structures and molecular interactions.MR spectroscopy beyond one dimension allows the study of the correlation,exchange processes,and separation of overlapping spectral information.The multi-dimensional concept has been re-implemented over the last two decades to explore molecular motion and spin dynamics in porous media.Apart from Fourier transform,methods have been developed for processing the multi-dimensional time-domain data,identifying the fluid components,and estimating pore surface permeability via joint relaxation and diffusion spectra.Through the resolution of spectroscopic signals with spatial encoding gradients,multi-dimensional MR imaging has been widely used to investigate the microscopic environment of living tissues and distinguish diseases.Signals in each voxel are usually expressed as multi-exponential decay,representing microstructures or environments along multiple pore scales.The separation of contributions from different environments is a common ill-posed problem,which can be resolved numerically.Moreover,the inversion methods and experimental parameters determine the resolution of multi-dimensional spectra.This paper reviews the algorithms that have been proposed to process multidimensional MR datasets in different scenarios.Detailed information at the microscopic level,such as tissue components,fluid types and food structures in multi-disciplinary sciences,could be revealed through multi-dimensional MR.
基金The Project of Research on Technologyand Devices for Traffic Guidance (Vehicle Navigation)System of Beijing Municipal Commission of Science and Technology(No H030630340320)the Project of Research on theIntelligence Traffic Information Platform of Beijing Education Committee
文摘A K-nearest neighbor (K-NN) based nonparametric regression model was proposed to predict travel speed for Beijing expressway. By using the historical traffic data collected from the detectors in Beijing expressways, a specically designed database was developed via the processes including data filtering, wavelet analysis and clustering. The relativity based weighted Euclidean distance was used as the distance metric to identify the K groups of nearest data series. Then, a K-NN nonparametric regression model was built to predict the average travel speeds up to 6 min into the future. Several randomly selected travel speed data series, collected from the floating car data (FCD) system, were used to validate the model. The results indicate that using the FCD, the model can predict average travel speeds with an accuracy of above 90%, and hence is feasible and effective.
基金supported by the National Natural Science Foundation of China (Grant No. 50539010, 50539110, 50579010, 50539030 and 50809025)
文摘To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.
基金supported by the Program of Introducing Talents of Disciplines to Universities of the Ministry of Education and State Administration of the Foreign Experts Affairs of China (the 111 Project, Grant No.B08048)the Special Basic Research Fund for Methodology in Hydrology of the Ministry of Sciences and Technology of China (Grant No. 2011IM011000)
文摘The question of how to choose a copula model that best fits a given dataset is a predominant limitation of the copula approach, and the present study aims to investigate the techniques of goodness-of-fit tests for multi-dimensional copulas. A goodness-of-fit test based on Rosenblatt's transformation was mathematically expanded from two dimensions to three dimensions and procedures of a bootstrap version of the test were provided. Through stochastic copula simulation, an empirical application of historical drought data at the Lintong Gauge Station shows that the goodness-of-fit tests perform well, revealing that both trivariate Gaussian and Student t copulas are acceptable for modeling the dependence structures of the observed drought duration, severity, and peak. The goodness-of-fit tests for multi-dimensional copulas can provide further support and help a lot in the potential applications of a wider range of copulas to describe the associations of correlated hydrological variables. However, for the application of copulas with the number of dimensions larger than three, more complicated computational efforts as well as exploration and parameterization of corresponding copulas are required.
基金National Natural Science Foundation of China(No.71101109)Shanghai Pujiang Program,China(No.12PJ1404600)
文摘The increasing popularity of e-commerce brings large volumes of sporadic orders from different customers,which have to be handled by freight trucks and distribution centers. To improve the level of service and reduce the total shipping cost as well as traffic congestions in urban area, flexible methods and optimal vehicle routing strategies should be adopted to improve the efficiency of distribution effort. An optimization solution for vehicle routing and scheduling problem with time window for sporadic orders (VRPTW- S) was provided based on time-dependent travel time extracted from floating car data (FCD) with ArcGIS platform. A VRPTW-S model derived from the traditional vehicle routing problem was proposed, in which uncertainty of customer orders and travel time were considered. Based on this model, an advanced vehicle routing algorithm was designed to solve the problem. A case study of Shenzhen, Guangdong province, China, was conducted to demonstrate the vehicle operation flow,in which process of FCD and efficiency of delivery systems under different situations were discussed. The final results demonstrated a good performance of application of time-dependent travel time information using FCD in solving vehicle routing problems.
基金Project(2023JH26-10100002)supported by the Liaoning Science and Technology Major Project,ChinaProjects(U21A20117,52074085)supported by the National Natural Science Foundation of China+1 种基金Project(2022JH2/101300008)supported by the Liaoning Applied Basic Research Program Project,ChinaProject(22567612H)supported by the Hebei Provincial Key Laboratory Performance Subsidy Project,China。
文摘Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.
基金Sponsored by the National Natural Science Foundation of China(Grant No.71101109)
文摘With the expansion of urban area and development of taxi system,problems arise,such as low operation efficiency,high taxi idling rate,and long passenger waiting-time. Although various studies have been conducted,only limited overview of the factors towards urban taxi system has been provided. Consequently,a comprehensive evaluation of taxi system is essential for the urban planner to analyze the current situation and take effective measures. This paper,by using Floating Car Data( FCD),proposes a Comprehensive Taxi Assessment Index( CTAI) to quantify the quality of existing urban taxi system with the assistance of Geographic Information System( GIS) technology. The proposed index system extracts and classifies key factors,reflecting the taxi system from the perspectives of operation efficiency,customer and taxi-driver satisfaction. The system contributes to improving the organization and operation of urban taxi system. Based on the data obtained from the city of Shenzhen,Guangdong Province,China,for both weekday and weekends( Dec.,2011),the proposed CTAI was illustrated by using the Principal Component Analysis( PCA) with ArcGIS 10. 0 platform. The results indicate that the system provides a good multi-dimensional view to delve into the existing urban taxi operation, thus to point out the most sensitive indices towards the entire system,which consequently provides guidelines for future improvement and management of urban taxi system.
文摘After introducing the principle of float car data (FCD), this paper gives the primary flow of pre-handing and map- matching of the FCD. After analyzing the percentage of coverage of FCD on the road network, large quantity of heritage database of routing status is used to estimate the routing velocity when lack of FCD on parts road segments. Multi liner regression model is then put forwarded by considering the spatial correlativity among the road network, and some model parameters are deduced when time series is classified in day and week. Besides, error of velocity probability and error of status probability are achieved based on the result from field testing while the feasibility and reliability of the velocity estimation model is obtained as well. Finally, as a case study in Shanghai center area, the whole routing velocity in the road network is estimated and published in real time.
文摘Speed is of great importance to the safety level of a road. Speed choice is strongly influenced by the road environment and the drivers' assessment of safe speed level at a specific location. This paper presents an analysis of the relationships between speed and road characteristics and speed and driver characteristics. The analysis is based on big data on speed and driver characteristics combined with data on road characteristics on 49 secondary rural two-lane roads in Denmark. Data is modelled using multivariate linear regression. The results show a primarily influence from road and shoulder width, the extent of road markings and the section lengths on speed. Secondly, they also show the presence of woodland and intersections influencing speed as gender, age of vehicle and time of day do.
文摘In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and implementing a method by combining classical Apriori algorithm with the model, digging out frequent items of elevator accident data to explore the main reasons for the occurrence of elevator accidents. In addition, a collaborative edge model of elevator accidents is set to achieve data sharing, making it possible to check the detail of each cause to confirm the causes of elevator accidents. Lastly the association rules are applied to find the law of elevator Accidents.
基金Project(2010-0020163) supported by Key Research Institute Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Korea
文摘Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and distance measure, and were proved. To calculate the degree of similarity of discrete data, relative degree between data and total distribution was obtained. Discrete data similarity measure was completed with combination of mentioned relative degrees. Power interconnected system with multi characteristics was considered to apply discrete similarity measure. Naturally, similarity measure was extended to multi-dimensional similarity measure case, and applied to bus clustering problem.
文摘Although China’s urban floating population is mainly concentrated in developed cities,from the central and western cities to the eastern developed cities,but the characteristics of the floating population in different cities are significantly different.This paper systematically investigates the spatiotemporal characteristics and influencing factors of the floating population in different levels of cities.The results show that the regional imbalance to further strengthen,accumulation and dispersion trend has become increasingly obvious,liquidity is positively correlated and city level scale,and urban agglomeration and the core city is still polarization center of floating population.Flow range is closely related to urban hierarchy:the higher the intra-urban grade,the more tend to inter-provincial flow;the lower the city grade,the more tend to intra-urban mobility.Short-term(1-2 years)and long-term(more than 7 years)flow-time coexist.The short-term liquidity increases with the city grade,and the long-term liquidity decreases with the city level.Farmers are still the main body of the floating population.Younger age,lower education level,low-skilled,high gender ratio employees are the most basic demographic characteristics of the floating population,although there are differences between different cities.The main reason for affecting the floating population is seeking jobs and doing business.
基金Project(61362021)supported by the National Natural Science Foundation of ChinaProject(2016GXNSFAA380149)supported by Natural Science Foundation of Guangxi Province,China+1 种基金Projects(2016YJCXB02,2017YJCX34)supported by Innovation Project of GUET Graduate Education,ChinaProject(2011KF11)supported by the Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education,China
文摘Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments.
基金National Natural Science Foundation of China (No. 51174202)Doctoral Fund of Ministry of Education of China (No. 20100095110013)
文摘A model that rapidly predicts the density components of raw coal is described.It is based on a threegrade fast float/sink test.The recent comprehensive monthly floating and sinking data are used for comparison.The predicted data are used to draw washability curves and to provide a rapid evaluation of the effect from heavy medium induced separation.Thirty-one production shifts worth of fast float/sink data and the corresponding quick ash data are used to verify the model.The results show a small error with an arithmetic average of 0.53 and an absolute average error of 1.50.This indicates that this model has high precision.The theoretical yield from the washability curves is 76.47% for the monthly comprehensive data and 81.31% using the model data.This is for a desired cleaned coal ash of 9%.The relative error between these two is 6.33%,which is small and indicates that the predicted data can be used to rapidly evaluate the separation effect of gravity separation equipment.
文摘为提高浮动车数据中异常数据检测能力及不同载客状态下的模型检测分析能力,提出基于S-DTA-IIForest(Summation&Difference Third Order Average&Improvement-Isolation Forest)的浮动车数据异常检测算法。构建由相邻两项求和(S)、三阶求和平均差分(DTA)的二维度空间SDTA特征向量;提出差额累计更新和动态区分辨识的改进孤立森林IIForest算法,通过设置停止阈值参数,避免当出现新样本异常值分数大于停止阈值时,仅更新样本不更新孤立森林模型的问题,设计每个二叉树区分辨识度参数,区分辨识度位于停止区间时停止二叉树生长,提高算法收敛性能,以ROC(Receiver Operating Characteristic)曲线下面积AUC(Area Under ROC Cure)、F1-score为指标对模型精度进行对比分析,并以重庆市中心城区学府大道开展实例验证。结果表明:本文S-DTA-IIForest组合算法AUC、F1-score分别为86.63%、0.89,AUC较传统孤立森林IForest(Isolation Forest)提高32.4%,运行效率提高1.29%,具有收敛速度更快、精度更高的优势,载客条件下模型AUC、F1-score较未载客分别提高7.7%、10.8%,组合算法对载客数据有更高的检测精度,且未载客状态数据异常率较载客状态增加71.4%,未载客数据异常率更高。
文摘What can occur within a mere second?A bee can flutter its wings 240 times;over 4,000 stars can appear in the vast expanse of the universe;and at Ya’an Big Data Industrial Park,125,000 photos are shared on the Internet and zillions of floating-point operations are completed per second.What can occur within a mere second?A bee can flutter its wings 240 times;over 4,000 stars can appear in the vast expanse of the universe;and at Ya’an Big Data Industrial Park,125,000 photos are shared on the Internet and zillions of floating-point operations are completed per second.