期刊文献+
共找到3,752篇文章
< 1 2 188 >
每页显示 20 50 100
DCEL:classifier fusion model for Android malware detection
1
作者 XU Xiaolong JIANG Shuai +1 位作者 ZHAO Jinbo WANG Xinheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期163-177,共15页
The rapid growth of mobile applications,the popularity of the Android system and its openness have attracted many hackers and even criminals,who are creating lots of Android malware.However,the current methods of Andr... The rapid growth of mobile applications,the popularity of the Android system and its openness have attracted many hackers and even criminals,who are creating lots of Android malware.However,the current methods of Android malware detection need a lot of time in the feature engineering phase.Furthermore,these models have the defects of low detection rate,high complexity,and poor practicability,etc.We analyze the Android malware samples,and the distribution of malware and benign software in application programming interface(API)calls,permissions,and other attributes.We classify the software’s threat levels based on the correlation of features.Then,we propose deep neural networks and convolutional neural networks with ensemble learning(DCEL),a new classifier fusion model for Android malware detection.First,DCEL preprocesses the malware data to remove redundant data,and converts the one-dimensional data into a two-dimensional gray image.Then,the ensemble learning approach is used to combine the deep neural network with the convolutional neural network,and the final classification results are obtained by voting on the prediction of each single classifier.Experiments based on the Drebin and Malgenome datasets show that compared with current state-of-art models,the proposed DCEL has a higher detection rate,higher recall rate,and lower computational cost. 展开更多
关键词 Android malware detection deep learning ensemble learning model fusion
下载PDF
A deep learning fusion model for accurate classification of brain tumours in Magnetic Resonance images
2
作者 Nechirvan Asaad Zebari Chira Nadheef Mohammed +8 位作者 Dilovan Asaad Zebari Mazin Abed Mohammed Diyar Qader Zeebaree Haydar Abdulameer Marhoon Karrar Hameed Abdulkareem Seifedine Kadry Wattana Viriyasitavat Jan Nedoma Radek Martinek 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期790-804,共15页
Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods... Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly. 展开更多
关键词 brain tumour deep learning feature fusion model MRI images multi‐classification
下载PDF
Multi-dimensional Simulation of Phase Change by a 0D-2D Model Coupling via Stefan Condition
3
作者 Adrien Drouillet Romain Le Tellier +2 位作者 Raphaël Loubère Mathieu Peybernes Louis Viot 《Communications on Applied Mathematics and Computation》 2023年第2期853-884,共32页
Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an applic... Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an application pertaining to the safety of light water nuclear reactors.Postulating a core meltdown accident,the behaviour of the core melt(aka corium)into a steel vessel is of tremendous importance when evaluating the vessel integrity.Evaluating correctly the heat fluxes requires the numerical simulation of the interaction between the liquid material and its solid counterpart which forms during the solidification process,but also may melt back.To simulate this configuration,encoun-tered in various industrial applications,one considers a bi-phase model constituted by a liquid phase in contact and interaction with its solid phase.The liquid phase may solidify in presence of low energetic source,while the solid phase may melt due to an intense heat flux from the high-temperature liquid.In the frame of the in-house legacy code,several simplifying assumptions(0D multi-layer discretization,instantaneous heat transfer via a quadratic temperature profile in solids)are made for the modelling of such phase changes.In the present work,these shortcomings are illustrated and further overcome by solving a 2D heat conduction model in the solid by a mixed Raviart-Thomas finite element method coupled to the liquid phase due to heat and mass exchanges through Stefan condition.The liquid phase is modeled with a 0D multi-layer approach.The 0D-liquid and 2D-solid mod-els are coupled by a Stefan like phase change interface model.Several sanity checks are performed to assess the validity of the approach on 1D and 2D academical configurations for which exact or reference solutions are available.Then more advanced situations(genu-ine multi-dimensional phase changes and an"industrial-like scenario")are simulated to verify the appropriate behavior of the obtained coupled simulation scheme. 展开更多
关键词 Simulation of phase change fusion SOLIDIFICATION 0D multi-layer model 2D heat conduction model model coupling
下载PDF
Cardiac Arrhythmia Disease Classifier Model Based on a Fuzzy Fusion Approach 被引量:1
4
作者 Fatma Taher Hamoud Alshammari +3 位作者 Lobna Osman Mohamed Elhoseny Abdulaziz Shehab Eman Elayat 《Computers, Materials & Continua》 SCIE EI 2023年第5期4485-4499,共15页
Cardiac diseases are one of the greatest global health challenges.Due to the high annual mortality rates,cardiac diseases have attracted the attention of numerous researchers in recent years.This article proposes a hy... Cardiac diseases are one of the greatest global health challenges.Due to the high annual mortality rates,cardiac diseases have attracted the attention of numerous researchers in recent years.This article proposes a hybrid fuzzy fusion classification model for cardiac arrhythmia diseases.The fusion model is utilized to optimally select the highest-ranked features generated by a variety of well-known feature-selection algorithms.An ensemble of classifiers is then applied to the fusion’s results.The proposed model classifies the arrhythmia dataset from the University of California,Irvine into normal/abnormal classes as well as 16 classes of arrhythmia.Initially,at the preprocessing steps,for the miss-valued attributes,we used the average value in the linear attributes group by the same class and the most frequent value for nominal attributes.However,in order to ensure the model optimality,we eliminated all attributes which have zero or constant values that might bias the results of utilized classifiers.The preprocessing step led to 161 out of 279 attributes(features).Thereafter,a fuzzy-based feature-selection fusion method is applied to fuse high-ranked features obtained from different heuristic feature-selection algorithms.In short,our study comprises three main blocks:(1)sensing data and preprocessing;(2)feature queuing,selection,and extraction;and(3)the predictive model.Our proposed method improves classification performance in terms of accuracy,F1measure,recall,and precision when compared to state-of-the-art techniques.It achieves 98.5%accuracy for binary class mode and 98.9%accuracy for categorized class mode. 展开更多
关键词 CARDIAC ARRHYTHMIA PREPROCESSING missing values classification model fusion
下载PDF
Intelligent 6G Wireless Network with Multi-Dimensional Information Perception 被引量:1
5
作者 YANG Bei LIANG Xin +3 位作者 LIU Shengnan JIANG Zheng ZHU Jianchi SHE Xiaoming 《ZTE Communications》 2023年第2期3-10,共8页
Intelligence and perception are two operative technologies in 6G scenarios.The intelligent wireless network and information perception require a deep fusion of artificial intelligence(AI)and wireless communications in... Intelligence and perception are two operative technologies in 6G scenarios.The intelligent wireless network and information perception require a deep fusion of artificial intelligence(AI)and wireless communications in 6G systems.Therefore,fusion is becoming a typical feature and key challenge of 6G wireless communication systems.In this paper,we focus on the critical issues and propose three application scenarios in 6G wireless systems.Specifically,we first discuss the fusion of AI and 6G networks for the enhancement of 5G-advanced technology and future wireless communication systems.Then,we introduce the wireless AI technology architecture with 6G multidimensional information perception,which includes the physical layer technology of multi-dimensional feature information perception,full spectrum fusion technology,and intelligent wireless resource management.The discussion of key technologies for intelligent 6G wireless network networks is expected to provide a guideline for future research. 展开更多
关键词 6G wireless network artificial intelligence multi-dimensional information perception full spectrum fusion
下载PDF
Possibilities for the synthesis of superheavy element Z=121 in fusion reactions 被引量:1
6
作者 Ming-Hao Zhang Yu-Hai Zhang +3 位作者 Ying Zou Xiu-Xiu Yang Gen Zhang Feng-Shou Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第6期90-100,共11页
Based on the dinuclear system model,the calculated evaporation residue cross sections matched well with the current experimental results.The synthesis of superheavy elements Z=121 was systematically studied through co... Based on the dinuclear system model,the calculated evaporation residue cross sections matched well with the current experimental results.The synthesis of superheavy elements Z=121 was systematically studied through combinations of stable projectiles with Z=21-30 and targets with half-lives exceeding 50 d.The influence of mass asymmetry and isotopic dependence on the projectile and target nuclei was investigated in detail.The reactions^(254)Es(^(46)Ti,3n)^(297)121 and^(252)Es(^(46)Ti,3n)^(295)121 were found to be experimentally feasible for synthesizing superheavy element Z=121,with maximal evaporation residue cross sections of 6.619 and 4.123 fb at 219.9 and 223.9 MeV,respectively. 展开更多
关键词 Superheavy nuclei Dinuclear system model fusion reaction Evaporation residue cross section
下载PDF
Fusion-Based Deep Learning Model for Automated Forest Fire Detection
7
作者 Mesfer Al Duhayyim Majdy M.Eltahir +5 位作者 Ola Abdelgney Omer Ali Amani Abdulrahman Albraikan Fahd N.Al-Wesabi Anwer Mustafa Hilal Manar Ahmed Hamza Mohammed Rizwanullah 《Computers, Materials & Continua》 SCIE EI 2023年第10期1355-1371,共17页
Earth resource and environmental monitoring are essential areas that can be used to investigate the environmental conditions and natural resources supporting sustainable policy development,regulatory measures,and thei... Earth resource and environmental monitoring are essential areas that can be used to investigate the environmental conditions and natural resources supporting sustainable policy development,regulatory measures,and their implementation elevating the environment.Large-scale forest fire is considered a major harmful hazard that affects climate change and life over the globe.Therefore,the early identification of forest fires using automated tools is essential to avoid the spread of fire to a large extent.Therefore,this paper focuses on the design of automated forest fire detection using a fusion-based deep learning(AFFD-FDL)model for environmental monitoring.The AFFDFDL technique involves the design of an entropy-based fusion model for feature extraction.The combination of the handcrafted features using histogram of gradients(HOG)with deep features using SqueezeNet and Inception v3 models.Besides,an optimal extreme learning machine(ELM)based classifier is used to identify the existence of fire or not.In order to properly tune the parameters of the ELM model,the oppositional glowworm swarm optimization(OGSO)algorithm is employed and thereby improves the forest fire detection performance.A wide range of simulation analyses takes place on a benchmark dataset and the results are inspected under several aspects.The experimental results highlighted the betterment of the AFFD-FDL technique over the recent state of art techniques. 展开更多
关键词 Environment monitoring remote sensing forest fire detection deep learning machine learning fusion model
下载PDF
Intelligent Fish Behavior Classification Using Modified Invasive Weed Optimization with Ensemble Fusion Model
8
作者 B.Keerthi Samhitha R.Subhashini 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期3125-3142,共18页
Accurate and rapid detection of fish behaviors is critical to perceive health and welfare by allowing farmers to make informed management deci-sions about recirculating the aquaculture system while decreasing labor.Th... Accurate and rapid detection of fish behaviors is critical to perceive health and welfare by allowing farmers to make informed management deci-sions about recirculating the aquaculture system while decreasing labor.The classic detection approach involves placing sensors on the skin or body of the fish,which may interfere with typical behavior and welfare.The progress of deep learning and computer vision technologies opens up new opportunities to understand the biological basis of this behavior and precisely quantify behaviors that contribute to achieving accurate management in precision farming and higher production efficacy.This study develops an intelligent fish behavior classification using modified invasive weed optimization with an ensemble fusion(IFBC-MIWOEF)model.The presented IFBC-MIWOEF model focuses on identifying the distinct kinds of fish behavior classification.To accomplish this,the IFBC-MIWOEF model designs an ensemble of Deep Learning(DL)based fusion models such as VGG-19,DenseNet,and Effi-cientNet models for fish behavior classification.In addition,the hyperparam-eter tuning of the DL models is carried out using the MIWO algorithm,which is derived from the concepts of oppositional-based learning(OBL)and the IWO algorithm.Finally,the softmax(SM)layer at the end of the DL model categorizes the input into distinct fish behavior classes.The experimental validation of the IFBC-MIWOEF model is tested using fish videos,and the results are examined under distinct aspects.An Extensive comparative study pointed out the improved outcomes of the IFBC-MIWOEF model over recent approaches. 展开更多
关键词 Fish behavior AQUACULTURE computer vision deep learning invasive weed optimization fusion model
下载PDF
A novel adaptive temporal-spatial information fusion model based on Dempster-Shafer evidence theory
9
作者 胡振涛 SU Yujie ZHANG Zihan 《High Technology Letters》 EI CAS 2023年第4期358-364,共7页
In the field of target recognition based on the temporal-spatial information fusion,evidence the-ory has received extensive attention.To achieve accurate and efficient target recognition by the evi-dence theory,an ada... In the field of target recognition based on the temporal-spatial information fusion,evidence the-ory has received extensive attention.To achieve accurate and efficient target recognition by the evi-dence theory,an adaptive temporal-spatial information fusion model is proposed.Firstly,an adaptive evaluation correction mechanism is constructed by the evidence distance and Deng entropy,which realizes the credibility discrimination and adaptive correction of the spatial evidence.Secondly,the credibility decay operator is introduced to obtain the dynamic credibility of temporal evidence.Finally,the sequential combination of temporal-spatial evidences is achieved by Shafer’s discount criterion and Dempster’s combination rule.The simulation results show that the proposed method not only considers the dynamic and sequential characteristics of the temporal-spatial evidences com-bination,but also has a strong conflict information processing capability,which provides a new refer-ence for the field of temporal-spatial information fusion. 展开更多
关键词 temporal-spatial information fusion evidence theory Deng entropy evidence dis-tance credibility decay model
下载PDF
Possibility of reaching the predicted center of the“island of stability”via the radioactive beam-induced fusion reactions
10
作者 Ming-Hao Zhang Ying Zou +3 位作者 Mei-Chen Wang Gen Zhang Qing-Lin Niu Feng-Shou Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第9期186-195,共10页
Based on the dinuclear system model,the synthesis of the predicted double-magic nuclei^(298)Fl and 304120 was investigated via neutron-rich radioactive beam-induced fusion reactions.The reaction^(58)Ca+^(244)Pu is pre... Based on the dinuclear system model,the synthesis of the predicted double-magic nuclei^(298)Fl and 304120 was investigated via neutron-rich radioactive beam-induced fusion reactions.The reaction^(58)Ca+^(244)Pu is predicted to be favorable for producing^(298)Fl with a maximal ER cross section of 0.301 pb.Investigations of the entrance channel effect reveal that the^(244)Pu target is more promising for synthesizing^(298)Fl than the neutron-rich targets^(248)Cm and^(249)Bk,because of the influence of the Coulomb barrier.For the synthesis of 304120,the maximal ER cross section of 0.046 fb emerges in the reaction^(58)V+^(249)Bk,indicating the need for further advancements in both experimental facilities and reaction mechanisms. 展开更多
关键词 Superheavy nuclei Dinuclear system model fusion reaction Double-magic nucleus Radioactive beam
下载PDF
Enhanced Growth Optimizer and Its Application to Multispectral Image Fusion
11
作者 Jeng-Shyang Pan Wenda Li +2 位作者 Shu-Chuan Chu Xiao Sui Junzo Watada 《Computers, Materials & Continua》 SCIE EI 2024年第11期3033-3062,共30页
The growth optimizer(GO)is an innovative and robust metaheuristic optimization algorithm designed to simulate the learning and reflective processes experienced by individuals as they mature within the social environme... The growth optimizer(GO)is an innovative and robust metaheuristic optimization algorithm designed to simulate the learning and reflective processes experienced by individuals as they mature within the social environment.However,the original GO algorithm is constrained by two significant limitations:slow convergence and high mem-ory requirements.This restricts its application to large-scale and complex problems.To address these problems,this paper proposes an innovative enhanced growth optimizer(eGO).In contrast to conventional population-based optimization algorithms,the eGO algorithm utilizes a probabilistic model,designated as the virtual population,which is capable of accurately replicating the behavior of actual populations while simultaneously reducing memory consumption.Furthermore,this paper introduces the Lévy flight mechanism,which enhances the diversity and flexibility of the search process,thus further improving the algorithm’s global search capability and convergence speed.To verify the effectiveness of the eGO algorithm,a series of experiments were conducted using the CEC2014 and CEC2017 test sets.The results demonstrate that the eGO algorithm outperforms the original GO algorithm and other compact algorithms regarding memory usage and convergence speed,thus exhibiting powerful optimization capabilities.Finally,the eGO algorithm was applied to image fusion.Through a comparative analysis with the existing PSO and GO algorithms and other compact algorithms,the eGO algorithm demonstrates superior performance in image fusion. 展开更多
关键词 Growth optimizer probabilistic model Lévy flight image fusion
下载PDF
Student Academic Performance Predictive Model Based on Dual-stream Deep Network
12
作者 XIE Hui ZHANG Pengyuan +4 位作者 DONG Zexiao YANG Huiting KANG Huan HE Jiangshan CHEN Xueli 《计算机科学》 CSCD 北大核心 2024年第10期119-128,共10页
Blended teaching is one of the essential teaching methods with the development of information technology.Constructing a learning effect evaluation model is helpful to improve students’academic performance and helps t... Blended teaching is one of the essential teaching methods with the development of information technology.Constructing a learning effect evaluation model is helpful to improve students’academic performance and helps teachers to better implement course teaching.However,a lack of evaluation models for the fusion of temporal and non-temporal behavioral data leads to an unsatisfactory evaluation effect.To meet the demand for predicting students’academic performance through learning behavior data,this study proposes a learning effect evaluation method that integrates expert perspective indicators to predict academic performance by constructing a dual-stream network that combines temporal behavior data and non-temporal behavior data in the learning process.In this paper,firstly,the Delphi method is used to analyze and process the course learning behavior data of students and establish an effective evaluation index system of learning behavior with universality;secondly,the Mann-Whitney U-test and the complex correlation analysis are used to analyze further and validate the evaluation indexes;and lastly,a dual-stream information fusion model,which combines temporal and non-temporal features,is established.The learning effect evaluation model is built,and the results of the mean absolute error(MAE)and root mean square error(RMSE)indexes are 4.16 and 5.29,respectively.This study indicates that combining expert perspectives for evaluation index selection and further fusing temporal and non-temporal behavioral features that for learning effect evaluation and prediction is rationality,accuracy,and effectiveness,which provides a powerful help for the practical application of learning effect evaluation and prediction. 展开更多
关键词 Blended teaching Expert perspective indicators Two-stream information fusion model
下载PDF
基于SEFusion-MPOR的多模态特征融合舆情表征算法
13
作者 郭小宇 马静 《情报理论与实践》 CSSCI 北大核心 2024年第7期181-189,共9页
[目的/意义]多模态舆情表征是多模态舆情计算与分析的基础。文章探索了一种赋予不同模态特征动态权重的舆情表征算法,可以更精准地捕捉到模态之间的依赖关系,极大降低多模态舆情表征复杂度,减少算力资源消耗。[方法/过程]SEFusion-MPOR... [目的/意义]多模态舆情表征是多模态舆情计算与分析的基础。文章探索了一种赋予不同模态特征动态权重的舆情表征算法,可以更精准地捕捉到模态之间的依赖关系,极大降低多模态舆情表征复杂度,减少算力资源消耗。[方法/过程]SEFusion-MPOR算法在预训练模型特征的基础上,通过全连接层、门控机制与激活函数构建了压缩与激活算子,获取各模态的动态权重,使用矩阵相乘将动态权重作用于相应模态,进而构建了多模态特征融合的网络舆情表征算法。[结果/结论]在Memotion 3与MVSA-multiple两个公开的多模态舆情数据集上进行实验,与基线模型的对比表明,文章提出的表征方法在多个子任务中取得了最优结果。该方法仅通过简单操作,就达到了复杂表征算法的效果,且具有可解释性与外推性。其高效和准确的表征方法不仅适用于舆情情报处理,也适合情报分析工作中的通用多模态信息基础表征。[局限]研究验证仅限于双模态数据集,未涉及更广泛模态的数据集。 展开更多
关键词 多模态舆情 多模态特征融合 舆情表征 预训练模型 SEfusion-MPOR
下载PDF
Classification and Visualization of Surrounding Rock Mass Stability Based on Multi-Dimensional Cloud Model
14
作者 Liming Xue Wenlong Shen +2 位作者 Zhixue Zheng Jiming Chen Hongtao Liu 《Energy Engineering》 EI 2021年第6期1799-1810,共12页
The classification of the stability of surrounding rock is an uncertain system with multiple indices.The Multidimensional Cloud Model provides an advanced solution through the use of an improved model of One-dimension... The classification of the stability of surrounding rock is an uncertain system with multiple indices.The Multidimensional Cloud Model provides an advanced solution through the use of an improved model of One-dimensional Cloud Model.Setting each index as a one-dimensional attribute,the Multi-dimensional Cloud Model can set the digital characteristics of each index according to the cloud theory.The Multi-dimensional cloud generator can calculate the certainty of each grade,and then determine the stability levels of the surrounding rock according to the principle of maximum certainty.Using this model to 5 coal mine roadway surrounding rock examples and comparing the results with those of One-dimensional and Two-dimensional Cloud Models,we find that the Multi-dimensional Cloud Model can provide a more accurate solution.Since the classification results of the Multidimensional Cloud Model are difficult to be presented intuitively and visually,we reduce the Multi-dimensional Cloud Model to One-dimensional and Two-dimensional Cloud Models in order to visualize the results achieved by the Multi-dimensional Cloud Model.This approach provides a more accurate and intuitive method for the classification of the surrounding rock stability,and it can also be applied to other types of classification problems. 展开更多
关键词 multi-dimensional cloud model surrounding rock stability UNCERTAIN VISUALIZATION
下载PDF
Mean shift algorithm based on fusion model for head tracking
15
作者 安国成 高建坡 吴镇扬 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期299-302,共4页
To solve the mismatch between the candidate model and the reference model caused by the time change of the tracked head, a novel mean shift algorithm based on a fusion model is provided. A fusion model is employed to ... To solve the mismatch between the candidate model and the reference model caused by the time change of the tracked head, a novel mean shift algorithm based on a fusion model is provided. A fusion model is employed to describe the tracked head by sampling the models of the fore-head and the back-head under different situations. Thus the fusion head reference model is represented by the color distribution estimated from both the fore- head and the back-head. The proposed tracking system is efficient and it is easy to realize the goal of continual tracking of the head by using the fusion model. The results show that the new tracker is robust up to a 360°rotation of the head on a cluttered background and the tracking precision is improved. 展开更多
关键词 mean shift head tracking kernel density estimate fusion model
下载PDF
Effect of Fusion Neutron Source Numerical Models on Neutron Wall Loading in a D-D Tokamak Device 被引量:4
16
作者 陈义学 吴宜灿 《Plasma Science and Technology》 SCIE EI CAS CSCD 2003年第2期1749-1754,共6页
Effect of various spatial and energy distributions of fusion neutron sourceon the calculation of neutron wall loading of Tokamak D-D fusion device has been investigated bymeans of the 3-D Monte Carlo code MCNP. A real... Effect of various spatial and energy distributions of fusion neutron sourceon the calculation of neutron wall loading of Tokamak D-D fusion device has been investigated bymeans of the 3-D Monte Carlo code MCNP. A realistic Monte Carlo source model was developed based onthe accurate representation of the spatial distribution and energy spectrum of fusion neutrons tosolve the complicated problem of tokamak fusion neutron source modelling. The results show thatthose simplified source models will introduce significant uncertainties. For accurate estimation ofthe key nuclear responses of the tokamak design and analyses, the use of the realistic source isrecommended. In addition, the accumulation of tritium produced during D-D plasma operation should becarefully considered. 展开更多
关键词 fusion neutron source modelLING TOKAMAK Monte Carlo method
下载PDF
Hierarchical hybrid testability modeling and evaluation method based on information fusion 被引量:4
17
作者 Xishan Zhang Kaoli Huang +1 位作者 Pengcheng Yan Guangyao Lian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期523-532,共10页
In order to meet the demand of testability analysis and evaluation for complex equipment under a small sample test in the equipment life cycle, the hierarchical hybrid testability model- ing and evaluation method (HH... In order to meet the demand of testability analysis and evaluation for complex equipment under a small sample test in the equipment life cycle, the hierarchical hybrid testability model- ing and evaluation method (HHTME), which combines the testabi- lity structure model (TSM) with the testability Bayesian networks model (TBNM), is presented. Firstly, the testability network topo- logy of complex equipment is built by using the hierarchical hybrid testability modeling method. Secondly, the prior conditional prob- ability distribution between network nodes is determined through expert experience. Then the Bayesian method is used to update the conditional probability distribution, according to history test information, virtual simulation information and similar product in- formation. Finally, the learned hierarchical hybrid testability model (HHTM) is used to estimate the testability of equipment. Compared with the results of other modeling methods, the relative deviation of the HHTM is only 0.52%, and the evaluation result is the most accu rate. 展开更多
关键词 small sample complex equipment hierarchical hybrid information fusion testability modeling and evaluation.
下载PDF
Evidence fusion procedure based on hybrid DSm model 被引量:2
18
作者 Hongfei Li Hongbin Jin Kangsheng Tian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第6期959-967,共9页
Dezert-Smarandache(DSm) theory, a new information fusion theory, is widely applied in image processing, multiple targets tracking identification, and other areas for its excellent processing ability of imperfect inf... Dezert-Smarandache(DSm) theory, a new information fusion theory, is widely applied in image processing, multiple targets tracking identification, and other areas for its excellent processing ability of imperfect information. However, earlier research on DSm theory mainly focused on one sort of questions. An evidence fusion procedure is proposed based on the hybrid DSm model to compensate for a lack of research on the entire information procedure of DSm theory. This paper analyzes the evidence fusion procedure, as well as correlative node input and output information. Key steps and detailed procedures of evidence fusion are also discussed. Finally, an experiment illustrates the efficiency of the proposed evidence fusion procedure. 展开更多
关键词 Dezert-Smarandache(DSm) theory evidence fusion procedure hybrid DSm model information fusion
下载PDF
EMD Based Multi-scale Model for High Resolution Image Fusion 被引量:5
19
作者 WANG Jian ZHANG Jixian LIU Zhengjun 《Geo-Spatial Information Science》 2008年第1期31-37,共7页
High resolution image fusion is a significant focus in the field of image processing. A new image fusion model is presented based on the characteristic level of empirical mode decomposition (EMD). The intensity hue ... High resolution image fusion is a significant focus in the field of image processing. A new image fusion model is presented based on the characteristic level of empirical mode decomposition (EMD). The intensity hue saturation (IHS) transform of the multi-spectral image first gives the intensity image. Thereafter, the 2D EMD in terms of row-column extension of the 1D EMD model is used to decompose the detailed scale image and coarse scale image from the high-resolution band image and the intensity image. Finally, a fused intensity image is obtained by reconstruction with high frequency of the high-resolution image and low frequency of the intensity image and IHS inverse transform result in the fused image. After presenting the EMD principle, a multi-scale decomposition and reconstruction algorithm of 2D EMD is defined and a fusion technique scheme is advanced based on EMD. Panchromatic band and multi-spectral band 3,2,1 of Quickbird are used to assess the quality of the fusion algorithm. After selecting the appropriate intrinsic mode function (IMF) for the merger on the basis of EMD analysis on specific row (column) pixel gray value series, the fusion scheme gives a fused image, which is compared with generally used fusion algorithms (wavelet, IHS, Brovey). The objectives of image fusion include enhancing the visibility of the image and improving the spatial resolution and the spectral information of the original images. To assess quality of an image after fusion, information entropy and standard deviation are applied to assess spatial details of the fused images and correlation coefficient, bias index and warping degree for measuring distortion between the original image and fused image in terms of spectral information. For the proposed fusion algorithm, better results are obtained when EMD algorithm is used to perform the fusion experience. 展开更多
关键词 image fusion experimental model decomposition quantitatively evaluation
下载PDF
Co-Estimation of State of Charge and Capacity for Lithium-Ion Batteries with Multi-Stage Model Fusion Method 被引量:5
20
作者 Rui Xiong Ju Wang +2 位作者 Weixiang Shen Jinpeng Tian Hao Mu 《Engineering》 SCIE EI 2021年第10期1469-1482,共14页
Lithium-ion batteries(LIBs)have emerged as the preferred energy storage systems for various types of electric transports,including electric vehicles,electric boats,electric trains,and electric airplanes.The energy man... Lithium-ion batteries(LIBs)have emerged as the preferred energy storage systems for various types of electric transports,including electric vehicles,electric boats,electric trains,and electric airplanes.The energy management of LIBs in electric transports for all-climate and long-life operation requires the accurate estimation of state of charge(SOC)and capacity in real-time.This study proposes a multistage model fusion algorithm to co-estimate SOC and capacity.Firstly,based on the assumption of a normal distribution,the mean and variance of the residual error from the model at different ageing levels are used to calculate the weight for the establishment of a fusion model with stable parameters.Secondly,a differential error gain with forward-looking ability is introduced into a proportional–integral observer(PIO)to accelerate convergence speed.Thirdly,a fusion algorithm is developed by combining a multistage model and proportional–integral–differential observer(PIDO)to co-estimate SOC and capacity under a complex application environment.Fourthly,the convergence and anti-noise performance of the fusion algorithm are discussed.Finally,the hardware-in-the-loop platform is set up to verify the performance of the fusion algorithm.The validation results of different aged LIBs over a wide range of temperature show that the presented fusion algorithm can realize a high-accuracy estimation of SOC and capacity with the relative errors within 2%and 3.3%,respectively. 展开更多
关键词 State of charge Capacity estimation model fusion Proportional-integral-differential observer HARDWARE-IN-THE-LOOP
下载PDF
上一页 1 2 188 下一页 到第
使用帮助 返回顶部