The catalogs of ground motion parameters for earthquake-prone regions of Kazakhstan used for modeling seismic effects in seismic hazard assessment and microzonation are presented.
Peak ground acceleration (PGA), frequency content and time duration are three fundamental parameters of seismic loading. This study focuses on the seismic load frequency and its effect on the underground structures. E...Peak ground acceleration (PGA), frequency content and time duration are three fundamental parameters of seismic loading. This study focuses on the seismic load frequency and its effect on the underground structures. Eight accelerograms regarding different occurred earthquakes that are scaled to an identical PGA and variation of ground motion parameters with ratio of peak ground velocity (PGV) to PGA, as a parameter related to the load frequency, are considered. Then, concrete lining response of a circular tunnel under various seismic conditions is evaluated analytically. In the next, seismic response of underground structure is assessed numerically using two different time histories. Finally, effects of incident load frequency and frequency ratio on the dynamic damping of geotechnical materials are discussed. Result of analyses show that specific energy of seismic loading with identical PGA is related to the seismic load frequency. Furthermore, incident load frequency and natural frequency of a system have influence on the wave attenuation and dynamic damping of the system.展开更多
Strong ground motion parameters for Shillong plateau of northeastern India are examined. Empirical relations are obtained for main parameters of ground motions as a function of earthquake magnitude, fault type, source...Strong ground motion parameters for Shillong plateau of northeastern India are examined. Empirical relations are obtained for main parameters of ground motions as a function of earthquake magnitude, fault type, source depth, velocity characterization of medium and distance. Correlation between ground motion parameters and characteristics of seismogenic zones are established. A new attenuation relation for peak ground acceleration is developed, which predicts higher expected PGA in the region. Parameters of strong motions, particularly the predominant periods and duration of vibrations, depend on the morphology of the studied area. The study measures low estimates of logarithmic width in Shillong plateau. The attenuation relation estimated for pulse width critically indicates increased pulse width dependence on the logarithmic distance which accounts for geometrical spreading and anelastic attenuation.展开更多
The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In th...The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...展开更多
Based on the calculation of the bedrock effective peak acceleration (EPA) zoning map in the Panxi area, the ratios of EPA with exceedance probabilities of 63%, 5%, 3%, 2% and 1% over 50 years to that of 10% in 50 year...Based on the calculation of the bedrock effective peak acceleration (EPA) zoning map in the Panxi area, the ratios of EPA with exceedance probabilities of 63%, 5%, 3%, 2% and 1% over 50 years to that of 10% in 50 years are 0.302, 1.30, 1.55, 1.76 and 2.14, respectively. The seismic effect will be conservative and safe if taking this zoning map as the earthquake resistant fortification level and following the relevant rules of the Code for Seismic Design of Buildings (GBJ11 89) to calculate the seismic effect. Furthermore, the main factors that influence the A10/A63 ratios have been found to be the attenuation relationship of seismic ground motion, the division of seismic potential source regions and the seismicity parameters. These achievements are helpful to the spreading and applying of the zoning map.展开更多
The attenuation relationship of ground motion based on seismology has always been a front subject of engineering earthquake.Among them,the regional finite-fault source model is very important.In view of this point,the...The attenuation relationship of ground motion based on seismology has always been a front subject of engineering earthquake.Among them,the regional finite-fault source model is very important.In view of this point,the general characteristics of regional seism-tectonics,including the dip and depth of the fault plane,are emphasized.According to the statistics of regional seism-tectonics and focal mechanisms in Sichuan,China,and the sensitivity of estimated peak ground acceleration(PGA)attenuation is analyzed,and the dip angle is taken as an average of 70°.Based the statistics of the upper crustal structure and the focal depth of regional earthquakes,the bottom boundary of the sedimentary cover can be used as the upper limit for estimating the depth of upper-edge.The analysis shows that this value is sensitive to PGA.Based on the analysis of geometric relations,the corresponding calculation formula is used,and a set of concepts and steps for building the regional finite-fault source model is proposed.The estimation of source parameters takes into account the uncertainty,the geometric relationship among parameters and the total energy conservation.Meanwhile,a set of reasonable models is developed,which lay a foundation for the further study of regional ground motion attenuation based on seismology.展开更多
This study examines the feasibility of using a machine learning approach for rapid damage assessment of rein-forced concrete(RC)buildings after the earthquake.Since the real-world damaged datasets are lacking,have lim...This study examines the feasibility of using a machine learning approach for rapid damage assessment of rein-forced concrete(RC)buildings after the earthquake.Since the real-world damaged datasets are lacking,have limited access,or are imbalanced,a simulation dataset is prepared by conducting a nonlinear time history analy-sis.Different machine learning(ML)models are trained considering the structural parameters and ground motion characteristics to predict the RC building damage into five categories:null,slight,moderate,heavy,and collapse.The random forest classifier(RFC)has achieved a higher prediction accuracy on testing and real-world damaged datasets.The structural parameters can be extracted using different means such as Google Earth,Open Street Map,unmanned aerial vehicles,etc.However,recording the ground motion at a closer distance requires the installation of a dense array of sensors which requires a higher cost.For places with no earthquake recording station/device,it is difficult to have ground motion characteristics.For that different ML-based regressor models are developed utilizing past-earthquake information to predict ground motion parameters such as peak ground acceleration and peak ground velocity.The random forest regressor(RFR)achieved better results than other regression models on testing and validation datasets.Furthermore,compared with the results of similar research works,a better result is obtained using RFC and RFR on validation datasets.In the end,these models are uti-lized to predict the damage categories of RC buildings at Saitama University and Okubo Danchi,Saitama,Japan after an earthquake.This damage information is crucial for government agencies or decision-makers to respond systematically in post-disaster situations.展开更多
How to select the adequate real strong earthquake ground motion for seismic analysis and design of structures is an essential problem in earthquake engineering research and practice. In the paper the concept of the se...How to select the adequate real strong earthquake ground motion for seismic analysis and design of structures is an essential problem in earthquake engineering research and practice. In the paper the concept of the severest design ground motion is proposed and a method is developed for comparing the severity of the recorded strong ground motions. By using this method the severest earthquake ground motions are selected out as seismic inputs to the structures to be designed from a database that consists of more than five thousand significant strong ground motion records collected over the world. The selected severest ground motions are very likely to be able to drive the structures to their critical response and thereby result in the highest damage potential. It is noted that for different structures with different predominant natural periods and at different sites where structures are located the severest design ground motions are usually different. Finally, two examples are illustrated to demonstrate the rationality of the concept and the reliability of the selected design motion.展开更多
In displacement-based seismic design, inelastic displacement ratio spectra (IDRS) are particularly useful for estimating the maximum lateral inelastic displacement demand of a nonlinear SDOF system from the maximum ...In displacement-based seismic design, inelastic displacement ratio spectra (IDRS) are particularly useful for estimating the maximum lateral inelastic displacement demand of a nonlinear SDOF system from the maximum elastic displacement demand of its counterpart linear elastic SDOF system. In this study, the characteristics of IDRS for near-fault pulse-type ground motions are investigated based on a great number of earthquake ground motions. The influence of site conditions, ratio of peak ground velocity (PGV) to peak ground acceleration (PGA), the PGV, and the maximum incremental velocity (MIV) on IDRS are also evaluated. The results indicate that the effect of near-fault ground motions on IDRS are significant only at periods between 0.2 s - 1.5 s, where the amplification can approach 20%. The PGV/PGA ratio has the most significant influence on IDRS among the parameters considered. It is also found that site conditions only slightly affect the IDRS.展开更多
When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed...When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed modeling strategy of multi-dimensional stochastic earthquakes is addressed in this study.This improved seismic model has several merits that enable it to better provide seismic analyses of structures.Specifically,at first,the ground motion model is compatible with the design response spectrum.Secondly,the evolutionary power spectrum involved in the model and the design response spectrum are constructed accordingly with sufficient consideration of the correlation between different seismic components.Thirdly,the random function-based dimension-reduction representation is applied,by which seismic modeling is established,with three elementary random variables.Numerical simulations of multi-dimensional stochastic ground motions in a specific design scenario indicate the effectiveness of the proposed modeling strategy.Moreover,the multi-dimensional seismic response and the global reliability of a high-rise frame-core tube structure is discussed in detail to further illustrate the engineering applicability of the proposed method.The analytical investigations demonstrate that the suggested stochastic model of multi-dimensional ground motion is available for accurate seismic response analysis and dynamic reliability assessment of complex engineering structures for performance-based seismic resistance design.展开更多
In the analysis and design of important structures with relatively long life spans, there is a need to generate strong motion data for possible large events. The source of an earthquake is characterized by the spatial...In the analysis and design of important structures with relatively long life spans, there is a need to generate strong motion data for possible large events. The source of an earthquake is characterized by the spatial distribution of slip on the fault plane. For future events, this is unknown. In this paper, a stochastic earthquake source model is developed to address this issue. Here, 1D and 2D stochastic models for slip distribution developed by Lavallée et al.(2006) are used. The random field associated with the slip distribution is heavy-tailed stable distribution which can be used for large events. Using 236 past rupture models, the spectral scaling parameter and the four stable or Levy's parameters against empirical relationship for known quantities like magnitude or fault length are developed. The model is validated with data from 411 stations of 1999 Chi-Chi earthquake. The simulated response spectrum showed good agreement to actual data. Further the proposed model is used to generate ground motion for the 1993 Killari Earthquake where strong motion data is not available. The simulated mean peak ground velocity was in turn related to the intensity(MSK) and compared against values in the literature.展开更多
In this study, a total of 115,246 ground motions recorded during earthquakes of Moment magnitudes ranging from M_w 5.0 to M_w 9.0 are analyzed statistically. A total of 21 ground motion parameters characterising the r...In this study, a total of 115,246 ground motions recorded during earthquakes of Moment magnitudes ranging from M_w 5.0 to M_w 9.0 are analyzed statistically. A total of 21 ground motion parameters characterising the recorded acceleration time histories are used in the analysis. Classification of these parameters through statistical correlation is reported and a parameter called "distance from zero-amplitude axis," or d_(Z-A), is formulated in the principal component space. The ability for d_(Z-A) to rate the damage potentials of strong motion records is evaluated through correlation of d_(Z-A) with Japan Meteorological Agency(JMA) instrumental seismic intensities. This parameter can be used to rate damage potential of any strong motion record irrespective of the magnitude and location of the earthquake. It can also be used in selecting ground motion records of appropriate damage potential in seismic design and probabilistic analysis.展开更多
A method to predict near-field strong ground motions for scenario earthquakes on active faults is proposed. First, macro-source parameters characterizing the entire source area, i.e., global source parameters, includi...A method to predict near-field strong ground motions for scenario earthquakes on active faults is proposed. First, macro-source parameters characterizing the entire source area, i.e., global source parameters, including fault length, fault width, rupture area, average slip on the fault plane, etc., are estimated by seismogeology survey, seismicity and seismic scaling laws. Second, slip distributions characterizing heterogeneity or roughness on the fault plane, i.e., local source parameters, are reproduced/evaluated by the hybrid slip model. Finally, the finite fault source model, developed from both the global and local source parameters, is combined with the stochastically synthetic technique of ground motion using the dynamic comer frequency based on seismology. The proposed method is applied to simulate the acceleration time histories on three base-rock stations during the 1994 Northridge earthquake. Comparisons between the predicted and recorded acceleration time histories show that the method is feasible and practicable.展开更多
Small earthquake data from the Pishan MS6.5 aftershocks is collected by the Xinjiang Regional Digital Seismic Observation Network.Five parameters of the focal region are obtained by micro genetic inversion:stress dro...Small earthquake data from the Pishan MS6.5 aftershocks is collected by the Xinjiang Regional Digital Seismic Observation Network.Five parameters of the focal region are obtained by micro genetic inversion:stress dropΔσof 75.95 bars,quality factor parameters Q0of 186.33 andηof 0.26,geometric attenuation parameters R1of 72.18km and R2of 139.70km.We calculate the Fourier spectrum and combine it with the random phase spectrum to get the ground motion time history,and build the strong motion acceleration attenuation relationship.The strong ground motion acceleration attenuation of the Pishan area is thus obtained.Because of the insufficiency of strong ground motion records,we added the records from the Wuqia MS6.9 earthquake on October 5,2008,the Akto MS6.2 earthquake on October 6,2008,and the Lop MS6.0 earthquake on March 9,2012 to the data.The comparison of the calculation results and the empirical attenuation relationships with strong ground motion records reveal that the strong motion data of Pishan and Lop earthquakes is higher than the empirical attenuation relationships.The Wuqia MS6.9 earthquake strong motion data is consistent with Yu Yanxiangs(2013)short axis result,and lower than the present result.展开更多
The continuous collision of the Eurasian plate and the Indian plate has resulted in several earthquakes in the Himalayan region.The 6.9 Mw 2011 Sikkim earthquake,which caused immense damage to the built environment in...The continuous collision of the Eurasian plate and the Indian plate has resulted in several earthquakes in the Himalayan region.The 6.9 Mw 2011 Sikkim earthquake,which caused immense damage to the built environment in Sikkim,was triggered by an intraplate source on the overriding Eurasian plate.Strong ground motions from the earthquake were recorded at stations established by IIT Roorkee as part of the PESMOS program.In this paper,near-field and far-field ground motions from this earthquake were analyzed to evaluate their key characteristics and examine their time-frequency features by employing Fast Fourier Transforms(FFTs)and Continuous Wavelet Transforms(CWTs).A comparison between the ground motion parameters of near-field and far-field seismic waves highlights the distinct characteristics of near-field ground motions.Additionally,the impact of near-field and far-field ground motions on the seismic response of a code-compliant RC building is investigated.The results from the non-linear time history analyses indicate that the roof displacements,drift ratio and strain induced in the frame elements are less than the code-prescribed maximum limits.Further,the demand and capacity levels for the RC frame elements were evaluated to compute the performance ratios.The results indicate that the extensive damage to reinforced concrete buildings in the 2011 Sikkim quake was primarily due to the nonengineered nature of the structures and also due to the non-compliance of the built structures to the seismic design code provisions.展开更多
The seismotectonic environment and seismic activity in Southwest China region were studied based on new data and new results obtained during the Eighth and Ninth Five-Year Plans, the seismic areas and zones and potent...The seismotectonic environment and seismic activity in Southwest China region were studied based on new data and new results obtained during the Eighth and Ninth Five-Year Plans, the seismic areas and zones and potential seismic source zones were determined, and the relation between seismic activity parameters and ground motion attenuation was determined. Finally the seismic ground motion zoning maps of the Pangxi region was compiled by using the multi-parameter and multi-scheme method.展开更多
On the basis of previous study of the 1679 Sanhe-Pinggu(M8.0) earthquake,the biggest event in history ever recorded in Beijing and its adjacent area,we made a 3-D strong ground motion simulation utilizing the staggere...On the basis of previous study of the 1679 Sanhe-Pinggu(M8.0) earthquake,the biggest event in history ever recorded in Beijing and its adjacent area,we made a 3-D strong ground motion simulation utilizing the staggered-grid finite differences method to study the distributions of peak ground velocity with different earthquake source models in the Beijing region.In the paper,earthquake source models and a transmission medium velocity model are established and the corresponding parameters are given in accordance to the results from a related previous study.Then,using a three-dimensional finite difference computing program of near-fault strong ground motion developed by Graves,the peak ground velocity caused by a destructive earthquake in the Beijing area is simulated.In our computation model,the earthquake source is 3km in depth,and a total number of 21,679 observation points on the ground surface are figured out.The transmission medium velocity model is composed of four stratums which are the Quaternary deposit,the upper crust,the upper part of the middle crust and the lower part of the middle crust.With the minimum grid spacing of 0.15km,a total of 2.28×106 grids are generated.Using a time step of 0.02 seconds we calculated the peak ground velocity for a duration of 8 seconds.After the analysis of the simulation results,we observed some basic characteristics of near-fault strong ground motion such as the concentration effect of near-fault peak ground velocity,rupture directivity effect,hanging wall effect,and basin effect.The results from our simulation and analysis suggest that the source and transmitting medium parameters in our model are suitable and the finite difference method is applicable to estimate the distribution of strong ground motion in the study region.展开更多
文摘The catalogs of ground motion parameters for earthquake-prone regions of Kazakhstan used for modeling seismic effects in seismic hazard assessment and microzonation are presented.
文摘Peak ground acceleration (PGA), frequency content and time duration are three fundamental parameters of seismic loading. This study focuses on the seismic load frequency and its effect on the underground structures. Eight accelerograms regarding different occurred earthquakes that are scaled to an identical PGA and variation of ground motion parameters with ratio of peak ground velocity (PGV) to PGA, as a parameter related to the load frequency, are considered. Then, concrete lining response of a circular tunnel under various seismic conditions is evaluated analytically. In the next, seismic response of underground structure is assessed numerically using two different time histories. Finally, effects of incident load frequency and frequency ratio on the dynamic damping of geotechnical materials are discussed. Result of analyses show that specific energy of seismic loading with identical PGA is related to the seismic load frequency. Furthermore, incident load frequency and natural frequency of a system have influence on the wave attenuation and dynamic damping of the system.
基金ILTP (Integrated Long Term Project) Scheme towards Indo-Russian Collaborative Project
文摘Strong ground motion parameters for Shillong plateau of northeastern India are examined. Empirical relations are obtained for main parameters of ground motions as a function of earthquake magnitude, fault type, source depth, velocity characterization of medium and distance. Correlation between ground motion parameters and characteristics of seismogenic zones are established. A new attenuation relation for peak ground acceleration is developed, which predicts higher expected PGA in the region. Parameters of strong motions, particularly the predominant periods and duration of vibrations, depend on the morphology of the studied area. The study measures low estimates of logarithmic width in Shillong plateau. The attenuation relation estimated for pulse width critically indicates increased pulse width dependence on the logarithmic distance which accounts for geometrical spreading and anelastic attenuation.
基金Supported by National Natural Science Foundation of China (No. 50778058 and No. 90715038)National Key Technology Research and Development Program of China (No. 2006BAC13B02)Major State Basic Research Development Program of China ("973" Program, No. 2008CB425802)
文摘The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...
文摘Based on the calculation of the bedrock effective peak acceleration (EPA) zoning map in the Panxi area, the ratios of EPA with exceedance probabilities of 63%, 5%, 3%, 2% and 1% over 50 years to that of 10% in 50 years are 0.302, 1.30, 1.55, 1.76 and 2.14, respectively. The seismic effect will be conservative and safe if taking this zoning map as the earthquake resistant fortification level and following the relevant rules of the Code for Seismic Design of Buildings (GBJ11 89) to calculate the seismic effect. Furthermore, the main factors that influence the A10/A63 ratios have been found to be the attenuation relationship of seismic ground motion, the division of seismic potential source regions and the seismicity parameters. These achievements are helpful to the spreading and applying of the zoning map.
基金National Natural Science Foundation of China(51678540,51778197)Heilongjiang Province Key Research and Development Program Guidance Project of China(GZ20220028)+2 种基金Heilongjiang Bayi Agricultural University Support Program for San Heng San Zong(ZRCPY202225)Heilongjiang Bayi Agricultural University Project of Scientific Research Initiation Plan for Learning and Introducing Talents of China(XYB2014-06)Daqing Science and Technology Plan Project of China(zd-2021-86).
文摘The attenuation relationship of ground motion based on seismology has always been a front subject of engineering earthquake.Among them,the regional finite-fault source model is very important.In view of this point,the general characteristics of regional seism-tectonics,including the dip and depth of the fault plane,are emphasized.According to the statistics of regional seism-tectonics and focal mechanisms in Sichuan,China,and the sensitivity of estimated peak ground acceleration(PGA)attenuation is analyzed,and the dip angle is taken as an average of 70°.Based the statistics of the upper crustal structure and the focal depth of regional earthquakes,the bottom boundary of the sedimentary cover can be used as the upper limit for estimating the depth of upper-edge.The analysis shows that this value is sensitive to PGA.Based on the analysis of geometric relations,the corresponding calculation formula is used,and a set of concepts and steps for building the regional finite-fault source model is proposed.The estimation of source parameters takes into account the uncertainty,the geometric relationship among parameters and the total energy conservation.Meanwhile,a set of reasonable models is developed,which lay a foundation for the further study of regional ground motion attenuation based on seismology.
文摘This study examines the feasibility of using a machine learning approach for rapid damage assessment of rein-forced concrete(RC)buildings after the earthquake.Since the real-world damaged datasets are lacking,have limited access,or are imbalanced,a simulation dataset is prepared by conducting a nonlinear time history analy-sis.Different machine learning(ML)models are trained considering the structural parameters and ground motion characteristics to predict the RC building damage into five categories:null,slight,moderate,heavy,and collapse.The random forest classifier(RFC)has achieved a higher prediction accuracy on testing and real-world damaged datasets.The structural parameters can be extracted using different means such as Google Earth,Open Street Map,unmanned aerial vehicles,etc.However,recording the ground motion at a closer distance requires the installation of a dense array of sensors which requires a higher cost.For places with no earthquake recording station/device,it is difficult to have ground motion characteristics.For that different ML-based regressor models are developed utilizing past-earthquake information to predict ground motion parameters such as peak ground acceleration and peak ground velocity.The random forest regressor(RFR)achieved better results than other regression models on testing and validation datasets.Furthermore,compared with the results of similar research works,a better result is obtained using RFC and RFR on validation datasets.In the end,these models are uti-lized to predict the damage categories of RC buildings at Saitama University and Okubo Danchi,Saitama,Japan after an earthquake.This damage information is crucial for government agencies or decision-makers to respond systematically in post-disaster situations.
基金National Natural Science Foundation of China (59895410)Natural Science Foundation of Heilongjiang Province (E0228) Joint Seismological Foundation of China (95-07-444).
文摘How to select the adequate real strong earthquake ground motion for seismic analysis and design of structures is an essential problem in earthquake engineering research and practice. In the paper the concept of the severest design ground motion is proposed and a method is developed for comparing the severity of the recorded strong ground motions. By using this method the severest earthquake ground motions are selected out as seismic inputs to the structures to be designed from a database that consists of more than five thousand significant strong ground motion records collected over the world. The selected severest ground motions are very likely to be able to drive the structures to their critical response and thereby result in the highest damage potential. It is noted that for different structures with different predominant natural periods and at different sites where structures are located the severest design ground motions are usually different. Finally, two examples are illustrated to demonstrate the rationality of the concept and the reliability of the selected design motion.
基金National Natural Science Foundation of China Under Grants No. 50608024 andNo.50538050Opening Laboratory of Earthquake Engineering and Engineering Vibration Foundation Under Grant No.2007001
文摘In displacement-based seismic design, inelastic displacement ratio spectra (IDRS) are particularly useful for estimating the maximum lateral inelastic displacement demand of a nonlinear SDOF system from the maximum elastic displacement demand of its counterpart linear elastic SDOF system. In this study, the characteristics of IDRS for near-fault pulse-type ground motions are investigated based on a great number of earthquake ground motions. The influence of site conditions, ratio of peak ground velocity (PGV) to peak ground acceleration (PGA), the PGV, and the maximum incremental velocity (MIV) on IDRS are also evaluated. The results indicate that the effect of near-fault ground motions on IDRS are significant only at periods between 0.2 s - 1.5 s, where the amplification can approach 20%. The PGV/PGA ratio has the most significant influence on IDRS among the parameters considered. It is also found that site conditions only slightly affect the IDRS.
基金National Natural Science Foundation of China under Grant Nos.51978543,52108444,and 51778343Plan of Outstanding Young and Middle-aged Scientific and Technological Innovation Team in the Universities of Hubei Province with Project No.T2020010Natural Science Foundation of Hebei Province under Grant No.E2021512001。
文摘When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed modeling strategy of multi-dimensional stochastic earthquakes is addressed in this study.This improved seismic model has several merits that enable it to better provide seismic analyses of structures.Specifically,at first,the ground motion model is compatible with the design response spectrum.Secondly,the evolutionary power spectrum involved in the model and the design response spectrum are constructed accordingly with sufficient consideration of the correlation between different seismic components.Thirdly,the random function-based dimension-reduction representation is applied,by which seismic modeling is established,with three elementary random variables.Numerical simulations of multi-dimensional stochastic ground motions in a specific design scenario indicate the effectiveness of the proposed modeling strategy.Moreover,the multi-dimensional seismic response and the global reliability of a high-rise frame-core tube structure is discussed in detail to further illustrate the engineering applicability of the proposed method.The analytical investigations demonstrate that the suggested stochastic model of multi-dimensional ground motion is available for accurate seismic response analysis and dynamic reliability assessment of complex engineering structures for performance-based seismic resistance design.
文摘In the analysis and design of important structures with relatively long life spans, there is a need to generate strong motion data for possible large events. The source of an earthquake is characterized by the spatial distribution of slip on the fault plane. For future events, this is unknown. In this paper, a stochastic earthquake source model is developed to address this issue. Here, 1D and 2D stochastic models for slip distribution developed by Lavallée et al.(2006) are used. The random field associated with the slip distribution is heavy-tailed stable distribution which can be used for large events. Using 236 past rupture models, the spectral scaling parameter and the four stable or Levy's parameters against empirical relationship for known quantities like magnitude or fault length are developed. The model is validated with data from 411 stations of 1999 Chi-Chi earthquake. The simulated response spectrum showed good agreement to actual data. Further the proposed model is used to generate ground motion for the 1993 Killari Earthquake where strong motion data is not available. The simulated mean peak ground velocity was in turn related to the intensity(MSK) and compared against values in the literature.
文摘In this study, a total of 115,246 ground motions recorded during earthquakes of Moment magnitudes ranging from M_w 5.0 to M_w 9.0 are analyzed statistically. A total of 21 ground motion parameters characterising the recorded acceleration time histories are used in the analysis. Classification of these parameters through statistical correlation is reported and a parameter called "distance from zero-amplitude axis," or d_(Z-A), is formulated in the principal component space. The ability for d_(Z-A) to rate the damage potentials of strong motion records is evaluated through correlation of d_(Z-A) with Japan Meteorological Agency(JMA) instrumental seismic intensities. This parameter can be used to rate damage potential of any strong motion record irrespective of the magnitude and location of the earthquake. It can also be used in selecting ground motion records of appropriate damage potential in seismic design and probabilistic analysis.
基金China Postdoctoral Science Foundation UnderGrant No. 2005037650 Heilongjiang Province PostdoctoralScience Foundation China EarthquakeAdministration’s Tenth"Five Year Plans" Project
文摘A method to predict near-field strong ground motions for scenario earthquakes on active faults is proposed. First, macro-source parameters characterizing the entire source area, i.e., global source parameters, including fault length, fault width, rupture area, average slip on the fault plane, etc., are estimated by seismogeology survey, seismicity and seismic scaling laws. Second, slip distributions characterizing heterogeneity or roughness on the fault plane, i.e., local source parameters, are reproduced/evaluated by the hybrid slip model. Finally, the finite fault source model, developed from both the global and local source parameters, is combined with the stochastically synthetic technique of ground motion using the dynamic comer frequency based on seismology. The proposed method is applied to simulate the acceleration time histories on three base-rock stations during the 1994 Northridge earthquake. Comparisons between the predicted and recorded acceleration time histories show that the method is feasible and practicable.
基金jointly sponsored by “The Ground Motion Attenuation Relationship Based on Seismology and Its Practicability” of the National Natural Science Foundation of China(51178434)“With Digital Ride Network Small Earthquake Records to Establish Regional Strong Ground Motion Attenuation Relations”from the National Natural Science Foundation of China(51478443)“Based on the Regional Parameters of Mixed Ground Motion Attenuation Relationship”from the National Natural Science Foundation of China(51678540)
文摘Small earthquake data from the Pishan MS6.5 aftershocks is collected by the Xinjiang Regional Digital Seismic Observation Network.Five parameters of the focal region are obtained by micro genetic inversion:stress dropΔσof 75.95 bars,quality factor parameters Q0of 186.33 andηof 0.26,geometric attenuation parameters R1of 72.18km and R2of 139.70km.We calculate the Fourier spectrum and combine it with the random phase spectrum to get the ground motion time history,and build the strong motion acceleration attenuation relationship.The strong ground motion acceleration attenuation of the Pishan area is thus obtained.Because of the insufficiency of strong ground motion records,we added the records from the Wuqia MS6.9 earthquake on October 5,2008,the Akto MS6.2 earthquake on October 6,2008,and the Lop MS6.0 earthquake on March 9,2012 to the data.The comparison of the calculation results and the empirical attenuation relationships with strong ground motion records reveal that the strong motion data of Pishan and Lop earthquakes is higher than the empirical attenuation relationships.The Wuqia MS6.9 earthquake strong motion data is consistent with Yu Yanxiangs(2013)short axis result,and lower than the present result.
文摘The continuous collision of the Eurasian plate and the Indian plate has resulted in several earthquakes in the Himalayan region.The 6.9 Mw 2011 Sikkim earthquake,which caused immense damage to the built environment in Sikkim,was triggered by an intraplate source on the overriding Eurasian plate.Strong ground motions from the earthquake were recorded at stations established by IIT Roorkee as part of the PESMOS program.In this paper,near-field and far-field ground motions from this earthquake were analyzed to evaluate their key characteristics and examine their time-frequency features by employing Fast Fourier Transforms(FFTs)and Continuous Wavelet Transforms(CWTs).A comparison between the ground motion parameters of near-field and far-field seismic waves highlights the distinct characteristics of near-field ground motions.Additionally,the impact of near-field and far-field ground motions on the seismic response of a code-compliant RC building is investigated.The results from the non-linear time history analyses indicate that the roof displacements,drift ratio and strain induced in the frame elements are less than the code-prescribed maximum limits.Further,the demand and capacity levels for the RC frame elements were evaluated to compute the performance ratios.The results indicate that the extensive damage to reinforced concrete buildings in the 2011 Sikkim quake was primarily due to the nonengineered nature of the structures and also due to the non-compliance of the built structures to the seismic design code provisions.
文摘The seismotectonic environment and seismic activity in Southwest China region were studied based on new data and new results obtained during the Eighth and Ninth Five-Year Plans, the seismic areas and zones and potential seismic source zones were determined, and the relation between seismic activity parameters and ground motion attenuation was determined. Finally the seismic ground motion zoning maps of the Pangxi region was compiled by using the multi-parameter and multi-scheme method.
基金This project was sponsored by the National Development and Reform Commission,PRC(20041138)
文摘On the basis of previous study of the 1679 Sanhe-Pinggu(M8.0) earthquake,the biggest event in history ever recorded in Beijing and its adjacent area,we made a 3-D strong ground motion simulation utilizing the staggered-grid finite differences method to study the distributions of peak ground velocity with different earthquake source models in the Beijing region.In the paper,earthquake source models and a transmission medium velocity model are established and the corresponding parameters are given in accordance to the results from a related previous study.Then,using a three-dimensional finite difference computing program of near-fault strong ground motion developed by Graves,the peak ground velocity caused by a destructive earthquake in the Beijing area is simulated.In our computation model,the earthquake source is 3km in depth,and a total number of 21,679 observation points on the ground surface are figured out.The transmission medium velocity model is composed of four stratums which are the Quaternary deposit,the upper crust,the upper part of the middle crust and the lower part of the middle crust.With the minimum grid spacing of 0.15km,a total of 2.28×106 grids are generated.Using a time step of 0.02 seconds we calculated the peak ground velocity for a duration of 8 seconds.After the analysis of the simulation results,we observed some basic characteristics of near-fault strong ground motion such as the concentration effect of near-fault peak ground velocity,rupture directivity effect,hanging wall effect,and basin effect.The results from our simulation and analysis suggest that the source and transmitting medium parameters in our model are suitable and the finite difference method is applicable to estimate the distribution of strong ground motion in the study region.