In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding ...In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.展开更多
It is well known that hierarchies of mathematical programming formulatlons with different numbers of variables and constraints have a considerable impact regarding the quality of solutions obtained once these formulat...It is well known that hierarchies of mathematical programming formulatlons with different numbers of variables and constraints have a considerable impact regarding the quality of solutions obtained once these formulations are fed to a commercial solver. In addition, even if dimensions are kept the same, changes in formulations may largely influence solvability and quality of results. This becomes evident especially if redundant constraints are used. We propose a related framework for information collection based on these constraints. We exemplify by means of a well-known combinatorial optimization problem from the knapsack problem family, i.e., the multidimensional multiple-choice knapsack problem (MMKP). This incorporates a relationship of the MMKP to some generalized set partitioning problems. Moreover, we investigate an application in maritime shipping and logistics by means of the dynamic berth allocation problem (DBAP), where optimal solutions are reached from the root node within the solver.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.10571116)
文摘In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.
文摘It is well known that hierarchies of mathematical programming formulatlons with different numbers of variables and constraints have a considerable impact regarding the quality of solutions obtained once these formulations are fed to a commercial solver. In addition, even if dimensions are kept the same, changes in formulations may largely influence solvability and quality of results. This becomes evident especially if redundant constraints are used. We propose a related framework for information collection based on these constraints. We exemplify by means of a well-known combinatorial optimization problem from the knapsack problem family, i.e., the multidimensional multiple-choice knapsack problem (MMKP). This incorporates a relationship of the MMKP to some generalized set partitioning problems. Moreover, we investigate an application in maritime shipping and logistics by means of the dynamic berth allocation problem (DBAP), where optimal solutions are reached from the root node within the solver.