With the case study of two rural communities of Hetian County and Shawan County in Xinjiang, the foundation, operation and development of the water management organizations in the two communities and their reform achi...With the case study of two rural communities of Hetian County and Shawan County in Xinjiang, the foundation, operation and development of the water management organizations in the two communities and their reform achievements were studied and compared. It was concluded that the reform of water resources management should be in accordance with the practical conditions of rural communities. Only with the same objectives of community people and by benefiting the farmers could the reform of water resources management be effectively implemented and achieve good results.展开更多
The rapid development of communications industry has spawned more new services and applications.The sixth-generation wireless communication system(6G)network is faced with more stringent and diverse requirements.While...The rapid development of communications industry has spawned more new services and applications.The sixth-generation wireless communication system(6G)network is faced with more stringent and diverse requirements.While ensuring performance requirements,such as high data rate and low latency,the problem of high energy consumption in the fifth-generation wireless communication system(5G)network has also become one of the problems to be solved in 6G.The wide-area coverage signaling cell technology conforms to the future development trend of radio access networks,and has the advantages of reducing network energy consumption and improving resource utilization.In wide-area coverage signaling cells,on-demand multi-dimensional resource allocation is an important technical means to ensure the ultimate performance requirements of users,and its effect will affect the efficiency of network resource utilization.This paper constructs a user-centric dynamic allocation model of wireless resources,and proposes a deep Q-network based dynamic resource allocation algorithm.The algorithm can realize dynamic and flexible admission control and multi-dimensional resource allocation in wide-area coverage signaling cells according to the data rate and latency demands of users.According to the simulation results,the proposed algorithm can effectively improve the average user experience on a long time scale,and ensure network users a high data rate and low energy consumption.展开更多
Xishuangbanna is one of the highest biological and cultural diversity areas in China, which manifests in the richness of forest management systems practiced by the different ethnic groups. Destruction and fragmentatio...Xishuangbanna is one of the highest biological and cultural diversity areas in China, which manifests in the richness of forest management systems practiced by the different ethnic groups. Destruction and fragmentation of tropical rainforests in Xishuangbanna however have threatened the wildlife and other biological diversity in the region because of the fragile tropical forest ecosystems.This paper analyzes the swidden agroecosystems in Xishuangbanna based on social organization, customary institutions, resource tenure, indigenous technological knowledge and market economy from community forestry point of views. It concludes that the swidden cultivation is a prototype of community forestry. It still evolves the diversity of community forestry in a transition to market economy in multi-ethnic minority areas in Xishuangbanna.展开更多
The scale expansion of the space information networks(SINs)makes the demands for tacking,telemetry and command(TT&C)missions increase dramatically.An increasing number of missions and a sharp conflict of resources...The scale expansion of the space information networks(SINs)makes the demands for tacking,telemetry and command(TT&C)missions increase dramatically.An increasing number of missions and a sharp conflict of resources make it much more challenging to schedule missions reasonably.In order to ensure both the mission completion rate of the high concurrent emergency missions and the performance of regular missions,a conflict degree scheduling algorithm based on transfer strategy(CDSA-TS)is proposed concurrently reconfiguring multi-dimensional resources reasonably.Furthermore,we design an emergency mission planning algorithm based on simulated annealing algorithm(EMPA-SA)to increase the probability of jumping out of the trap through the iterative neighborhood searching strategy and destabilization.Finally,we design a simulation system to verify the network performance in terms of the integrated weights of completed missions and the time consumption of the proposed algorithms.We also investigate the impact of the scheduling strategy for emergency missions on regular missions to improve the overall network performance,which provides guidance for emergency mission planning in the future for the large scale constellation oriented SINs.展开更多
基金Supported by the International Cooperation Department of the Ministry of Science&Technology of the People's Republic of China(2010DFB90240)
文摘With the case study of two rural communities of Hetian County and Shawan County in Xinjiang, the foundation, operation and development of the water management organizations in the two communities and their reform achievements were studied and compared. It was concluded that the reform of water resources management should be in accordance with the practical conditions of rural communities. Only with the same objectives of community people and by benefiting the farmers could the reform of water resources management be effectively implemented and achieve good results.
基金Project supported by the National Key Research and Development Program of China(No.2020YFB1806800)。
文摘The rapid development of communications industry has spawned more new services and applications.The sixth-generation wireless communication system(6G)network is faced with more stringent and diverse requirements.While ensuring performance requirements,such as high data rate and low latency,the problem of high energy consumption in the fifth-generation wireless communication system(5G)network has also become one of the problems to be solved in 6G.The wide-area coverage signaling cell technology conforms to the future development trend of radio access networks,and has the advantages of reducing network energy consumption and improving resource utilization.In wide-area coverage signaling cells,on-demand multi-dimensional resource allocation is an important technical means to ensure the ultimate performance requirements of users,and its effect will affect the efficiency of network resource utilization.This paper constructs a user-centric dynamic allocation model of wireless resources,and proposes a deep Q-network based dynamic resource allocation algorithm.The algorithm can realize dynamic and flexible admission control and multi-dimensional resource allocation in wide-area coverage signaling cells according to the data rate and latency demands of users.According to the simulation results,the proposed algorithm can effectively improve the average user experience on a long time scale,and ensure network users a high data rate and low energy consumption.
文摘Xishuangbanna is one of the highest biological and cultural diversity areas in China, which manifests in the richness of forest management systems practiced by the different ethnic groups. Destruction and fragmentation of tropical rainforests in Xishuangbanna however have threatened the wildlife and other biological diversity in the region because of the fragile tropical forest ecosystems.This paper analyzes the swidden agroecosystems in Xishuangbanna based on social organization, customary institutions, resource tenure, indigenous technological knowledge and market economy from community forestry point of views. It concludes that the swidden cultivation is a prototype of community forestry. It still evolves the diversity of community forestry in a transition to market economy in multi-ethnic minority areas in Xishuangbanna.
基金the Natural Science Foundation of China under Grant U19B2025 and Grant 62001347China Postdoctoral Science Foundation under Grant 2019TQ0241 and Grant 2020M673344the Fundamental Research Funds for the Central Universities under Grant XJS200117。
文摘The scale expansion of the space information networks(SINs)makes the demands for tacking,telemetry and command(TT&C)missions increase dramatically.An increasing number of missions and a sharp conflict of resources make it much more challenging to schedule missions reasonably.In order to ensure both the mission completion rate of the high concurrent emergency missions and the performance of regular missions,a conflict degree scheduling algorithm based on transfer strategy(CDSA-TS)is proposed concurrently reconfiguring multi-dimensional resources reasonably.Furthermore,we design an emergency mission planning algorithm based on simulated annealing algorithm(EMPA-SA)to increase the probability of jumping out of the trap through the iterative neighborhood searching strategy and destabilization.Finally,we design a simulation system to verify the network performance in terms of the integrated weights of completed missions and the time consumption of the proposed algorithms.We also investigate the impact of the scheduling strategy for emergency missions on regular missions to improve the overall network performance,which provides guidance for emergency mission planning in the future for the large scale constellation oriented SINs.