The paper discusses the statistical inference problem of the compound Poisson vector process(CPVP)in the domain of attraction of normal law but with infinite covariance matrix.The empirical likelihood(EL)method to con...The paper discusses the statistical inference problem of the compound Poisson vector process(CPVP)in the domain of attraction of normal law but with infinite covariance matrix.The empirical likelihood(EL)method to construct confidence regions for the mean vector has been proposed.It is a generalization from the finite second-order moments to the infinite second-order moments in the domain of attraction of normal law.The log-empirical likelihood ratio statistic for the average number of the CPVP converges to F distribution in distribution when the population is in the domain of attraction of normal law but has infinite covariance matrix.Some simulation results are proposed to illustrate the method of the paper.展开更多
For sparse storage and quick access to projection matrix based on vector type, this paper proposes a method to solve the problems of the repetitive computation of projection coefficient, the large space occupation and...For sparse storage and quick access to projection matrix based on vector type, this paper proposes a method to solve the problems of the repetitive computation of projection coefficient, the large space occupation and low retrieval efficiency of projection matrix in iterative reconstruction algorithms, which calculates only once the projection coefficient and stores the data sparsely in binary format based on the variable size of library vector type. In the iterative reconstruction process, these binary files are accessed iteratively and the vector type is used to quickly obtain projection coefficients of each ray. The results of the experiments show that the method reduces the memory space occupation of the projection matrix and the computation of projection coefficient in iterative process, and accelerates the reconstruction speed.展开更多
In this paper,we intreduce the concept and discuss the properties of minimum cycle of row vector in a generalized circulant Fuzzy matrix. We present a new expression for circulant Fuzzy matrix,and discuss some propert...In this paper,we intreduce the concept and discuss the properties of minimum cycle of row vector in a generalized circulant Fuzzy matrix. We present a new expression for circulant Fuzzy matrix,and discuss some properties of the idempotent elements of the semigroup of generalized circulant Fuzzy matrixes in connection with minimum cycle of row vector.展开更多
As one of the most essential and important operations in linear algebra, the performance prediction of sparse matrix-vector multiplication (SpMV) on GPUs has got more and more attention in recent years. In 2012, Guo a...As one of the most essential and important operations in linear algebra, the performance prediction of sparse matrix-vector multiplication (SpMV) on GPUs has got more and more attention in recent years. In 2012, Guo and Wang put forward a new idea to predict the performance of SpMV on GPUs. However, they didn’t consider the matrix structure completely, so the execution time predicted by their model tends to be inaccurate for general sparse matrix. To address this problem, we proposed two new similar models, which take into account the structure of the matrices and make the performance prediction model more accurate. In addition, we predict the execution time of SpMV for CSR-V, CSR-S, ELL and JAD sparse matrix storage formats by the new models on the CUDA platform. Our experimental results show that the accuracy of prediction by our models is 1.69 times better than Guo and Wang’s model on average for most general matrices.展开更多
In this paper,we investigate some properties of dual complex numbers,dual complex vectors,and dual complex matrices.First,based on the magnitude of the dual complex number,we study the Young inequality,the Hölder...In this paper,we investigate some properties of dual complex numbers,dual complex vectors,and dual complex matrices.First,based on the magnitude of the dual complex number,we study the Young inequality,the Hölder inequality,and the Minkowski inequality in the setting of dual complex numbers.Second,we define the p-norm of a dual complex vector,which is a nonnegative dual number,and show some related properties.Third,we study the properties of eigenvalues of unitary matrices and unitary triangulation of arbitrary dual complex matrices.In particular,we introduce the operator norm of dual complex matrices induced by the p-norm of dual complex vectors,and give expressions of three important operator norms of dual complex matrices.展开更多
针对传统的自适应波束形成算法在目标导向矢量失配及接收数据的协方差矩阵存在误差时,性能急剧下降的问题,提出了一种基于小快拍场景的联合协方差矩阵重构,及导向矢量优化的稳健波束形成算法。对不确定集约束求解得到干扰导向矢量,根据...针对传统的自适应波束形成算法在目标导向矢量失配及接收数据的协方差矩阵存在误差时,性能急剧下降的问题,提出了一种基于小快拍场景的联合协方差矩阵重构,及导向矢量优化的稳健波束形成算法。对不确定集约束求解得到干扰导向矢量,根据稀疏干扰来向的导向矢量近似正交,求出干扰导向矢量对应的干扰功率,从而完成协方差矩阵重构;对期望信号来向及其邻域进行权值求解,对加权后的数据特征分解,利用多信号分类(Multiple Signal Classification, MUSIC)谱估计算法对信号区域积分得到信号协方差矩阵,将其主特征值近似为期望信号的导向矢量完成重新估计。仿真结果表明,在无误差时,算法输出信干噪比(Signal to Interference Plus Noise Ratio, SINR)接近理论最优;在多种误差环境下输出性能随信噪比(Signal to Noise Ratio, SNR)的变化均具有较好的稳健性,并且在信号来向可精准形成波束;在小快拍时可以较快收敛至理论最优值。展开更多
为了减小低快拍数和低信噪比下采样协方差矩阵误差,并降低其运算复杂度,提出了一种基于实数化的均匀圆阵采样协方差矩阵重构方法。针对均匀圆阵的特点,通过组建特殊的基向量,构成特殊的重构矩阵。通过将采样协方差矩阵实数化,进一步降...为了减小低快拍数和低信噪比下采样协方差矩阵误差,并降低其运算复杂度,提出了一种基于实数化的均匀圆阵采样协方差矩阵重构方法。针对均匀圆阵的特点,通过组建特殊的基向量,构成特殊的重构矩阵。通过将采样协方差矩阵实数化,进一步降低了重构矩阵的复杂度。考虑到多通道不一致性对重构矩阵的影响,引入0位校正算法,提高了重构方法的稳健性。最后应用重构后的协方差矩阵进行子空间类波达方向估计(direction of arrival,DOA)。实验仿真证明,该特殊重构矩阵在实数化下与原矩阵重构能力相同;当快拍数为100、信噪比为0 dB时,双信源分辨力较重构前由74%提高到95%以上;理论重构运算复杂度降低到原来的53.99%。展开更多
基金Characteristic Innovation Projects of Ordinary Universities of Guangdong Province,China(No.2022KTSCX150)Zhaoqing Education Development Institute Project,China(No.ZQJYY2021144)Zhaoqing College Quality Project and Teaching Reform Project,China(Nos.zlgc202003 and zlgc202112)。
文摘The paper discusses the statistical inference problem of the compound Poisson vector process(CPVP)in the domain of attraction of normal law but with infinite covariance matrix.The empirical likelihood(EL)method to construct confidence regions for the mean vector has been proposed.It is a generalization from the finite second-order moments to the infinite second-order moments in the domain of attraction of normal law.The log-empirical likelihood ratio statistic for the average number of the CPVP converges to F distribution in distribution when the population is in the domain of attraction of normal law but has infinite covariance matrix.Some simulation results are proposed to illustrate the method of the paper.
基金National Natural Science Foundation of China(No.6171177)
文摘For sparse storage and quick access to projection matrix based on vector type, this paper proposes a method to solve the problems of the repetitive computation of projection coefficient, the large space occupation and low retrieval efficiency of projection matrix in iterative reconstruction algorithms, which calculates only once the projection coefficient and stores the data sparsely in binary format based on the variable size of library vector type. In the iterative reconstruction process, these binary files are accessed iteratively and the vector type is used to quickly obtain projection coefficients of each ray. The results of the experiments show that the method reduces the memory space occupation of the projection matrix and the computation of projection coefficient in iterative process, and accelerates the reconstruction speed.
文摘In this paper,we intreduce the concept and discuss the properties of minimum cycle of row vector in a generalized circulant Fuzzy matrix. We present a new expression for circulant Fuzzy matrix,and discuss some properties of the idempotent elements of the semigroup of generalized circulant Fuzzy matrixes in connection with minimum cycle of row vector.
文摘As one of the most essential and important operations in linear algebra, the performance prediction of sparse matrix-vector multiplication (SpMV) on GPUs has got more and more attention in recent years. In 2012, Guo and Wang put forward a new idea to predict the performance of SpMV on GPUs. However, they didn’t consider the matrix structure completely, so the execution time predicted by their model tends to be inaccurate for general sparse matrix. To address this problem, we proposed two new similar models, which take into account the structure of the matrices and make the performance prediction model more accurate. In addition, we predict the execution time of SpMV for CSR-V, CSR-S, ELL and JAD sparse matrix storage formats by the new models on the CUDA platform. Our experimental results show that the accuracy of prediction by our models is 1.69 times better than Guo and Wang’s model on average for most general matrices.
基金the National Natural Science Foundation of China(Grant No.11871051).
文摘In this paper,we investigate some properties of dual complex numbers,dual complex vectors,and dual complex matrices.First,based on the magnitude of the dual complex number,we study the Young inequality,the Hölder inequality,and the Minkowski inequality in the setting of dual complex numbers.Second,we define the p-norm of a dual complex vector,which is a nonnegative dual number,and show some related properties.Third,we study the properties of eigenvalues of unitary matrices and unitary triangulation of arbitrary dual complex matrices.In particular,we introduce the operator norm of dual complex matrices induced by the p-norm of dual complex vectors,and give expressions of three important operator norms of dual complex matrices.
文摘针对传统的自适应波束形成算法在目标导向矢量失配及接收数据的协方差矩阵存在误差时,性能急剧下降的问题,提出了一种基于小快拍场景的联合协方差矩阵重构,及导向矢量优化的稳健波束形成算法。对不确定集约束求解得到干扰导向矢量,根据稀疏干扰来向的导向矢量近似正交,求出干扰导向矢量对应的干扰功率,从而完成协方差矩阵重构;对期望信号来向及其邻域进行权值求解,对加权后的数据特征分解,利用多信号分类(Multiple Signal Classification, MUSIC)谱估计算法对信号区域积分得到信号协方差矩阵,将其主特征值近似为期望信号的导向矢量完成重新估计。仿真结果表明,在无误差时,算法输出信干噪比(Signal to Interference Plus Noise Ratio, SINR)接近理论最优;在多种误差环境下输出性能随信噪比(Signal to Noise Ratio, SNR)的变化均具有较好的稳健性,并且在信号来向可精准形成波束;在小快拍时可以较快收敛至理论最优值。
文摘为了减小低快拍数和低信噪比下采样协方差矩阵误差,并降低其运算复杂度,提出了一种基于实数化的均匀圆阵采样协方差矩阵重构方法。针对均匀圆阵的特点,通过组建特殊的基向量,构成特殊的重构矩阵。通过将采样协方差矩阵实数化,进一步降低了重构矩阵的复杂度。考虑到多通道不一致性对重构矩阵的影响,引入0位校正算法,提高了重构方法的稳健性。最后应用重构后的协方差矩阵进行子空间类波达方向估计(direction of arrival,DOA)。实验仿真证明,该特殊重构矩阵在实数化下与原矩阵重构能力相同;当快拍数为100、信噪比为0 dB时,双信源分辨力较重构前由74%提高到95%以上;理论重构运算复杂度降低到原来的53.99%。