Effect of pre-induced twinning on the microstructure evolution and mechanical properties of extruded Mg-9.26Gd-2.08Y-0.36Zr(GW92K)alloy have been investigated during multi-direction forging with large strains at decre...Effect of pre-induced twinning on the microstructure evolution and mechanical properties of extruded Mg-9.26Gd-2.08Y-0.36Zr(GW92K)alloy have been investigated during multi-direction forging with large strains at decreasing temperature from 400℃ to 300℃.The results showed that,whether there pre-induced twinning existing in the initial microstructure by pre-deformation or not,a mixed microstructure of residual coarse grains and notably refined grains formed under both conditions,combing with some residual coarse grains with less deformation inside grains and lots of dispersed nano-precipitates distributed along refined grain boundaries.However,a significant improvement with the tensile ductility was obtained by the pre-induced twinning in the former alloy.It was suggested that,the pre-induced twinning largely contributed to the grain refinement and lead to an increase in the ratio of fine grain structure which would be responsible for the better properties.Furthermore,during subsequent forging deformation in the pre-deformed sample,the grain refinement mechanism by gradual grain orientation rotation around the surface section in residual coarse-grains was a little different from that by the macro-shear deformation in the as-extruded condition.展开更多
The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinemen...The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.展开更多
Magnesium cylindrical parts have relatively poor mechanical properties and distinct anisotropy of microstructure,which hinder their application as structural components.To improve the performance of WE71 cylindrical p...Magnesium cylindrical parts have relatively poor mechanical properties and distinct anisotropy of microstructure,which hinder their application as structural components.To improve the performance of WE71 cylindrical parts,multi-direction forging(MDF)was introduced before back extrusion,and the microstructure and mechanical properties were investigated.Results of microstructure show that the grain size in the outer of the cylindrical bottom is refined from 30.1 to 27.7μm,the micro structure is more uniform and the dislocation density is higher.The bimodal grain structure is formed in the outer of the cylindrical wall,which is ascribed to the formation of MgsRE phases along grain boundaries.These phases result in the Zener pinning effect on grain boundaries and the reduction of DRX volume fraction.The texture type of the cylindrical bottom is<0001>‖ED and the cylindrical wall is<1010>‖ED,and the maximum pole intensity is 1.986 and 1.664,respectively.Results of the tensile test at room temperature show that combined improved strength and ductility of the cylindrical part is attained after introducing the MDF process.The ultimate tensile strength(UTS),yield strength(YS)and elongation are279 MPa,185 MPa and 12%at the bottom and 299 MPa,212 MPa and 20%at the wall.展开更多
In this study,the Mg-7Gd-5Y-1Nd-0.5Zr alloy can reach a high ductility by the process of multi-directional forging,and the evolution of the microstructure,texture and the mechanical properties were discussed systemati...In this study,the Mg-7Gd-5Y-1Nd-0.5Zr alloy can reach a high ductility by the process of multi-directional forging,and the evolution of the microstructure,texture and the mechanical properties were discussed systematically.The results show that after the solutionized sample was multi-forged at 500℃,its grain size can be refined from 292 um to 58 um.As the forging temperature decreased,fine particles precipitated in the matrix.The volume fraction of the particles increased with the forging temperature decreasing,so the nucleation and growth of crystallization were strongly restricted.There was no recrystallization as the forging temperature fell to 410℃,and the severe deformed grains distributed as streamlines perpendicular to the final compression axis.The texture intensity decreased with increasing forging passes.The sample with best ductility was obtained after compressed at 470℃,with an elongation to failure of 21%at room temperature,which is increased by 200%,in comparison with that of the samples in solutionized condition.EBSD results revealed that the mean grain size was 15 um.Refined grains as well as the weakened texture were the key factors to its high ductility.展开更多
Multi-direction impact forging(MDIF)was applied to the as-extruded ZK60 Mg alloy,and the microstructure,texture evolution and yield strength symmetry were investigated in the current study.The results showed that the ...Multi-direction impact forging(MDIF)was applied to the as-extruded ZK60 Mg alloy,and the microstructure,texture evolution and yield strength symmetry were investigated in the current study.The results showed that the average grain size of forged piece was greatly refined to 5.3μm after 120 forging passes,which was ascribed to the segmenting effect of{10–12}twins and the subsequent multiple rounds of dynamic recrystallization(DRX).A great deal of{10–12}twins were activated at the beginning of MDIF process,which played an important role in grain refinement.With forging proceeding,continuous and discontinuous DRX were successively activated,resulting in the fully DRXed microstructure.Meanwhile,the forged piece exhibited a unique four-peak texture,and the initial<10-10>//ED fiber texture component gradually evolved into multiple texture components composed of<0001>//FFD(first forging direction)and<11–20>//FFD texture.The special strain path was the key to the formation of the unique four-peak texture.The{10–12}twinning and basal slip were two dominant factors to the evolution of texture during MDIF process.Grain strengthening and dislocation strengthening were two main strengthening mechanisms of the forged piece.Besides,the symmetry of yield strength was greatly improved by MDIF process.展开更多
Multi-directional impact forging(MDIF)was applied to a Mg-7Al-2Sn(wt.%)Mg alloy to investigate its effect on the microstructural evolution.MDIF process exhibited high grain refinement efficiency.After MDIF 200 passes,...Multi-directional impact forging(MDIF)was applied to a Mg-7Al-2Sn(wt.%)Mg alloy to investigate its effect on the microstructural evolution.MDIF process exhibited high grain refinement efficiency.After MDIF 200 passes,the grain size drastically decreased to 20µm from the initial coarse grains of~500µm due to dynamic recrystallization(DRX).Meanwhile,original grain boundaries remained during MDIF and large numbers of fine sphericalβ-Mg_(17)Al_(12) particles dynamically precipitated along the original grain boundaries with high Al concentration,acting as effective pinning obstacles for the suppression of DRXed grain growth.Besides,micro-cracks nucleated during MDIF and propagated along the interface between the remained globular or cubic Al-Mn particles and Mg matrix.展开更多
The effect of multi-pass multi-directional forge(MDF)on the tribological properties of ZA22−xSi alloy(x=0,4,8 wt.%)was investigated.The results indicate that MDF breaks down the cast microstructure of alloys and produ...The effect of multi-pass multi-directional forge(MDF)on the tribological properties of ZA22−xSi alloy(x=0,4,8 wt.%)was investigated.The results indicate that MDF breaks down the cast microstructure of alloys and produces a well-modified microstructure comprising finely distributed α- and η-phases and primary Si particles.It is also found that,despite the matrix work softening,MDFed ZA22−xSi alloys show high wear resistance.The maximum wear resistance is observed in the five-pass MDFed ZA22−4Si sample,at the applied loads of 10 and 30 N,and its wear rates are lower than the wear rate of the as-cast ZA22 alloy by about 80% and 75%,respectively.MDF also significantly decreases both average friction coefficient and friction coefficient fluctuation of the sample.The high resistance of the substrate to microcracking,formation of hard Si reinforcements,fine redistribution of α- and η-phases in the microstructure,and formation of tribolayers rich in Al and Zn oxides can be considered as the main factors improving the tribological properties.展开更多
Grain size and texture changes of magnesium alloy AZ31 were studied in multidirectional forging(MDF) under decreasing temperature conditions.MDF was carried out up to large cumulative strains of 4.8 with changing the ...Grain size and texture changes of magnesium alloy AZ31 were studied in multidirectional forging(MDF) under decreasing temperature conditions.MDF was carried out up to large cumulative strains of 4.8 with changing the loading direction during decrease in temperature from pass to pass.MDF can accelerate the uniform development of fine-grained structures and increase the plastic workability at low temperatures.As a result,the MDFed alloy shows excellent higher strength as well as moderate ductility at room temperature even at the grain size below 1μm.Superplastic flow takes place at 423 K and depends on the anisotropy of MDFed samples.The mechanisms of strain-induced fine-grained structure development and of the plastic deformation were discussed in detail.展开更多
Effect of multi-directional forging(MDF)on wear properties of Mg-Zn alloys(with 2,4,and 6wt%Zn)is investigated.Dry sliding wear test was performed using pin on disk machine on MDF processed and homogenized samples.Wea...Effect of multi-directional forging(MDF)on wear properties of Mg-Zn alloys(with 2,4,and 6wt%Zn)is investigated.Dry sliding wear test was performed using pin on disk machine on MDF processed and homogenized samples.Wear behavior of samples was analyzed at loads of ION and 20 N,with sliding distances of 2000m and 4000m,at a sliding velocity of 3m/s.Microstructures of worn samples were observed under scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),and x-ray diffraction(XRD)and the results were analyzed.Mechanical properties were evaluated using microhardness test.After 5 passes of MDF,the average grain size was found to be 30±4p m,22±3 pm,and 18±3 pm,in Mg-2%Zn,Mg-4%Zn,and Mg-6%Zn alloys,respectively,with significant improvement in hardness in all cases.Wear resistance was improved after MDF processing,as well as,with increment in Zn content in Mg alloy.However,it decreased when the load and the sliding distance increased.Worn surface exhibited ploughing,delamination,plastic deformation,and wear debris along sliding direction,and abrasive wear was found to be the main mechanism.展开更多
Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in t...Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in the seismic data,which is a time-intensive task.Many researchers have utilized a robust Grey-level co-occurrence matrix(GLCM)-based texture attributes to map reservoir heterogeneity.However,these attributes take seismic data as input and might not be sensitive to lateral lithology variation.To incorporate the lithology information,we have developed an innovative impedance-based texture approach using GLCM workflow by integrating 3D acoustic impedance volume(a rock propertybased attribute)obtained from a deep convolution network-based impedance inversion.Our proposed workflow is anticipated to be more sensitive toward mapping lateral changes than the conventional amplitude-based texture approach,wherein seismic data is used as input.To evaluate the improvement,we applied the proposed workflow to the full-stack 3D seismic data from the Poseidon field,NW-shelf,Australia.This study demonstrates that a better demarcation of reservoir gas sands with improved lateral continuity is achievable with the presented approach compared to the conventional approach.In addition,we assess the implication of multi-stage faulting on facies distribution for effective reservoir characterization.This study also suggests a well-bounded potential reservoir facies distribution along the parallel fault lines.Thus,the proposed approach provides an efficient strategy by integrating the impedance information with texture attributes to improve the inference on reservoir heterogeneity,which can serve as a promising tool for identifying potential reservoir zones for both production benefits and fluid storage.展开更多
The effect of forging on the microstructure and texture evolution of a high Nb containing Ti-45Al-7Nb-0.3W(at.%)alloy was investigated by X-ray diffractometer(XRD),scanning electron microscopy(SEM),and transmission el...The effect of forging on the microstructure and texture evolution of a high Nb containing Ti-45Al-7Nb-0.3W(at.%)alloy was investigated by X-ray diffractometer(XRD),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).The results show that the as-cast alloy is mainly composed of α_(2)/γ lamellar colonies with a mean size of 70μm,but the hot-forged pancake displays a near duplex microstructure(DP).Kinking and bending of lamellar colonies,deformation twinning and dynamic recrystallization(DRX)occur during hot forging.Meanwhile,dense dislocations in theβphase after forging suggest that the high-temperature β phase with a disordered structure is favorable for improving the hot-workability of the alloy.Unlike the common TiAl casting texture,the solidification process of the investigated as-cast alloy with high Nb content is completely via the β phase region,resulting in the formation of a<110>γ fiber texture where the<110>γ aligns parallel to the heat-flow direction.In comparison,the relatively strong<001>and weak<302>texture components in the as-forged alloy are attributed to the deformation twinning.After annealing,static recrystallization occurs at the twin boundary and intersections,which weakens the deformation texture.展开更多
An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ...An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.展开更多
The homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging was investigated.Wheel hubs were produced using direct and compound loading.The results show that the mi...The homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging was investigated.Wheel hubs were produced using direct and compound loading.The results show that the microstructure and mechanical properties are inhomogeneous in direct forged samples.The microstructure of the wall is coarser than that of the base,and the mechanical properties are lower and some defects are detected at the wheel corner.Using compound loading,the microstructure and mechanical properties of the wall are improved evidently.With increasing feeding amount,the microstructure and mechanical properties become more homogeneous.The defects disappear when the feeding amount is 4 mm.The forged wheel hubs could obtain fine and homogeneous microstructure with grain size of 20-30 μm,tensile strength of 355 MPa and elongation of 10% when the feeding amount is 10 mm.The microstructure and mechanical properties of liquid forged workpieces could be controlled and homogenized using compound loading.展开更多
Microstructure and mechanical properties of AZ61 Mg alloy during isothermal multi-axial forging (MAF) were studied. The mechanisms of grain refinement and relationship between the microstructures and mechanical prop...Microstructure and mechanical properties of AZ61 Mg alloy during isothermal multi-axial forging (MAF) were studied. The mechanisms of grain refinement and relationship between the microstructures and mechanical properties were discussed. The results show that the average grain size decreases with increasing the number of MAF passes. The grains are significantly refined at the 1st and 2nd MAF passes, and gradually refined at higher MAF passes. The initial grain size of 148 lam decreases to about 14 gm after 6 MAF passes. The grain refinement occurs mainly by continuous dynamic recrystallization. With increasing the MAF passes, both the tensile strength and the elongation to failure of the alloy are significantly enhanced.展开更多
Microstructure and tensile properties of TC21 titanium alloy after near-isothermal forging with different parameters plus solution treatment and aging were investigated. It is found that the residual β matrix, which ...Microstructure and tensile properties of TC21 titanium alloy after near-isothermal forging with different parameters plus solution treatment and aging were investigated. It is found that the residual β matrix, which was strengthened by fine secondary α platelets forming during aging, exists in all the samples; while primary equiaxed α phase, bent lamellar α phase and α plates are simultaneously or individually present in one sample. The strength of alloy increases proportionally with increasing the content of residual β matrix, which is the result of increasing α/β interphase boundary. The plasticity of alloy has a downward trend as the content of residual β matrix increases. This attributes to the increase of fine secondary α platelets, which are cut by dislocations during the deformation. Additionally, coarse α plates with long axis parallel to the maximum resolved shear stress(MRSS) also reduce the plasticity of TC21 alloy.展开更多
The mechanical properties, microstructure and tensile fracture of Ti-6.5AI-IMo-IV-2Zr large section bars produced by three diffrent forging processes were investigated. The results show that when billet forging and fi...The mechanical properties, microstructure and tensile fracture of Ti-6.5AI-IMo-IV-2Zr large section bars produced by three diffrent forging processes were investigated. The results show that when billet forging and finish forging were conducted by means of fullering at high and low temperature of r-region, respectively; the microstructure of forged bar is coarse Widmanstaten structure; the mechanical properties, especially the reduction of cross-sectional area, are poor, and the room temperature tensile fracture presents a brittle feature. While billet forging was carried out by upset-fullering at high temperature of the r-region, and finish forging was proceeded through fullering at (a+fl)-region, the microstructure of forged bar was a duplex structure, the bar has better comprehensive mechanical properties, and the room temperature tensile fracture reveals a ductile feature. In order to obtain qualified Ti-6.SAI-IMo-IV-2Zr alloy bar, it is the key that as-cast microstructure should be completely broken during billet forging, and the forging temperature and deformation are also well controlled upon finishing forging.展开更多
The hot forging of large-scale P/M TiAl alloy billet deformation was investigated based on a joint application of Deform-3D-based numerical simulation and physical simulation techniques.The temperature dependence on t...The hot forging of large-scale P/M TiAl alloy billet deformation was investigated based on a joint application of Deform-3D-based numerical simulation and physical simulation techniques.The temperature dependence on the thermal and mechanical properties of the billet was considered and the optimum hot working temperature of packed TiAl alloy was 1150-1200 °C.Based on the simulation,the material flow and thermo mechanical field variables,such as stress,strain,and temperature distribution were obtained and the relationships of load—displacement and load—time were figured out.To verify the validity of the simulation results,the experiments were also carried out in a forging plant,and a pancake with diameter of 150 mm was obtained exhibiting a regular shape.展开更多
In order to reveal the differences caused by forging and rolling process for titanium ingots, hot compression behavior, mechanical properties and the microstructures of forged billets and rolled ones were investigated...In order to reveal the differences caused by forging and rolling process for titanium ingots, hot compression behavior, mechanical properties and the microstructures of forged billets and rolled ones were investigated in detail using Gleeble-1500 thermal mechanical simulator, universal testing machine and optical microscope (OM). The compression deformation experimental data of commercially pure titanium (CP-Ti) were mapped to be a T vs lg diagram in which data fall into three distinct regions, i.e., three-stage work hardening, two-stage work hardening and flow softening, which can be separated by border lines at 17.5 and 15.4 for lg Z, where Z represents the Zener-Hollomon parameter. The deformation twin is found to have higher Z-value corresponding to the work hardening region. The differences in microstructures and mechanical properties for two kinds of billets indicate that forged billet consists of deformation twins and some twin intersections, and many twins cross the grain boundaries. However, nearly no twins can be seen in the microstructure of billet formed by rolling under optical microscope (OM), but there are equiaxed and platelike grains. Tensile tests and Vickers hardness test indicate that yield strength, tensile strength and microhardness of the samples after forging are higher than those after rolling.展开更多
Tensile properties of a new α+Ti2Cu alloy after solid forging at 950 °C and semi-solid forging at 1 000 °C and 1 050 °C were investigated over the temperature range of 20-600 °C. The results reve...Tensile properties of a new α+Ti2Cu alloy after solid forging at 950 °C and semi-solid forging at 1 000 °C and 1 050 °C were investigated over the temperature range of 20-600 °C. The results reveal that high strength and low ductility are obtained in all semi-solid forged alloys. Tensile properties decrease as the semi-solid forging temperature increases, and cleavage fractures are observed after semi-solid forging at 1 050 °C. The variations in tensile properties are attributed to the coarse microstructures obtained in the semi-solid alloys. It is found that the elevated semi-solid temperatures lead to more liquid precipitates along the prior grain boundaries, which increases the peritectic precipitation and formation of Ti2Cu precipitation zones during re-solidification. Recrystallization heat treatment leads to fine microstructure of semi-solid forged alloys, resulting in improvement of tensile properties.展开更多
基金The authors gratefully acknowledge financial support from the National Basic Research Program of China(973 Program)through project no.2013CB632202National Natural Science Foundation of China(NSFC)through project no.51105350.
文摘Effect of pre-induced twinning on the microstructure evolution and mechanical properties of extruded Mg-9.26Gd-2.08Y-0.36Zr(GW92K)alloy have been investigated during multi-direction forging with large strains at decreasing temperature from 400℃ to 300℃.The results showed that,whether there pre-induced twinning existing in the initial microstructure by pre-deformation or not,a mixed microstructure of residual coarse grains and notably refined grains formed under both conditions,combing with some residual coarse grains with less deformation inside grains and lots of dispersed nano-precipitates distributed along refined grain boundaries.However,a significant improvement with the tensile ductility was obtained by the pre-induced twinning in the former alloy.It was suggested that,the pre-induced twinning largely contributed to the grain refinement and lead to an increase in the ratio of fine grain structure which would be responsible for the better properties.Furthermore,during subsequent forging deformation in the pre-deformed sample,the grain refinement mechanism by gradual grain orientation rotation around the surface section in residual coarse-grains was a little different from that by the macro-shear deformation in the as-extruded condition.
基金Projects(51204053,51074048,51204048)supported by the National Natural Science Foundation of ChinaProject(20110491518)supported by China Postdoctoral Science FoundationProject(2012CB619506)supported by the National Basic Research Program of China
文摘The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.
基金Project supported by the General Program of National Natural Science Foundation of China(51871195,51501015)。
文摘Magnesium cylindrical parts have relatively poor mechanical properties and distinct anisotropy of microstructure,which hinder their application as structural components.To improve the performance of WE71 cylindrical parts,multi-direction forging(MDF)was introduced before back extrusion,and the microstructure and mechanical properties were investigated.Results of microstructure show that the grain size in the outer of the cylindrical bottom is refined from 30.1 to 27.7μm,the micro structure is more uniform and the dislocation density is higher.The bimodal grain structure is formed in the outer of the cylindrical wall,which is ascribed to the formation of MgsRE phases along grain boundaries.These phases result in the Zener pinning effect on grain boundaries and the reduction of DRX volume fraction.The texture type of the cylindrical bottom is<0001>‖ED and the cylindrical wall is<1010>‖ED,and the maximum pole intensity is 1.986 and 1.664,respectively.Results of the tensile test at room temperature show that combined improved strength and ductility of the cylindrical part is attained after introducing the MDF process.The ultimate tensile strength(UTS),yield strength(YS)and elongation are279 MPa,185 MPa and 12%at the bottom and 299 MPa,212 MPa and 20%at the wall.
基金Project supported by the National Foundation of Natural Science(No.51105350 and No.51301173)project 973(No.2013CB632202)of National Ministry of Science and Technology+1 种基金This work was funded by the National Basic Research Program of China(973 Program)through project No.2013CB632202National Natural Science Foundation of China(NSFC)through projects No.51105350 and No.51301173,respectively.
文摘In this study,the Mg-7Gd-5Y-1Nd-0.5Zr alloy can reach a high ductility by the process of multi-directional forging,and the evolution of the microstructure,texture and the mechanical properties were discussed systematically.The results show that after the solutionized sample was multi-forged at 500℃,its grain size can be refined from 292 um to 58 um.As the forging temperature decreased,fine particles precipitated in the matrix.The volume fraction of the particles increased with the forging temperature decreasing,so the nucleation and growth of crystallization were strongly restricted.There was no recrystallization as the forging temperature fell to 410℃,and the severe deformed grains distributed as streamlines perpendicular to the final compression axis.The texture intensity decreased with increasing forging passes.The sample with best ductility was obtained after compressed at 470℃,with an elongation to failure of 21%at room temperature,which is increased by 200%,in comparison with that of the samples in solutionized condition.EBSD results revealed that the mean grain size was 15 um.Refined grains as well as the weakened texture were the key factors to its high ductility.
基金supported by National Natural Science Foundation of China(Grant No.51975146)Key Research and Development Plan in Shandong Province(Grant No.2018JMRH0412,2019JZZY010364)National Defense Basic Scientific Research of China(Grant no.JCK2018603C017)。
文摘Multi-direction impact forging(MDIF)was applied to the as-extruded ZK60 Mg alloy,and the microstructure,texture evolution and yield strength symmetry were investigated in the current study.The results showed that the average grain size of forged piece was greatly refined to 5.3μm after 120 forging passes,which was ascribed to the segmenting effect of{10–12}twins and the subsequent multiple rounds of dynamic recrystallization(DRX).A great deal of{10–12}twins were activated at the beginning of MDIF process,which played an important role in grain refinement.With forging proceeding,continuous and discontinuous DRX were successively activated,resulting in the fully DRXed microstructure.Meanwhile,the forged piece exhibited a unique four-peak texture,and the initial<10-10>//ED fiber texture component gradually evolved into multiple texture components composed of<0001>//FFD(first forging direction)and<11–20>//FFD texture.The special strain path was the key to the formation of the unique four-peak texture.The{10–12}twinning and basal slip were two dominant factors to the evolution of texture during MDIF process.Grain strengthening and dislocation strengthening were two main strengthening mechanisms of the forged piece.Besides,the symmetry of yield strength was greatly improved by MDIF process.
基金The authors gratefully acknowledge the financial support from General Motors Corporation,the National Basic Research Program of China(973 Program,No.2013CB632202)National Natural Science Foundation of China(NSFC,No.51301173).
文摘Multi-directional impact forging(MDIF)was applied to a Mg-7Al-2Sn(wt.%)Mg alloy to investigate its effect on the microstructural evolution.MDIF process exhibited high grain refinement efficiency.After MDIF 200 passes,the grain size drastically decreased to 20µm from the initial coarse grains of~500µm due to dynamic recrystallization(DRX).Meanwhile,original grain boundaries remained during MDIF and large numbers of fine sphericalβ-Mg_(17)Al_(12) particles dynamically precipitated along the original grain boundaries with high Al concentration,acting as effective pinning obstacles for the suppression of DRXed grain growth.Besides,micro-cracks nucleated during MDIF and propagated along the interface between the remained globular or cubic Al-Mn particles and Mg matrix.
文摘The effect of multi-pass multi-directional forge(MDF)on the tribological properties of ZA22−xSi alloy(x=0,4,8 wt.%)was investigated.The results indicate that MDF breaks down the cast microstructure of alloys and produces a well-modified microstructure comprising finely distributed α- and η-phases and primary Si particles.It is also found that,despite the matrix work softening,MDFed ZA22−xSi alloys show high wear resistance.The maximum wear resistance is observed in the five-pass MDFed ZA22−4Si sample,at the applied loads of 10 and 30 N,and its wear rates are lower than the wear rate of the as-cast ZA22 alloy by about 80% and 75%,respectively.MDF also significantly decreases both average friction coefficient and friction coefficient fluctuation of the sample.The high resistance of the substrate to microcracking,formation of hard Si reinforcements,fine redistribution of α- and η-phases in the microstructure,and formation of tribolayers rich in Al and Zn oxides can be considered as the main factors improving the tribological properties.
文摘Grain size and texture changes of magnesium alloy AZ31 were studied in multidirectional forging(MDF) under decreasing temperature conditions.MDF was carried out up to large cumulative strains of 4.8 with changing the loading direction during decrease in temperature from pass to pass.MDF can accelerate the uniform development of fine-grained structures and increase the plastic workability at low temperatures.As a result,the MDFed alloy shows excellent higher strength as well as moderate ductility at room temperature even at the grain size below 1μm.Superplastic flow takes place at 423 K and depends on the anisotropy of MDFed samples.The mechanisms of strain-induced fine-grained structure development and of the plastic deformation were discussed in detail.
文摘Effect of multi-directional forging(MDF)on wear properties of Mg-Zn alloys(with 2,4,and 6wt%Zn)is investigated.Dry sliding wear test was performed using pin on disk machine on MDF processed and homogenized samples.Wear behavior of samples was analyzed at loads of ION and 20 N,with sliding distances of 2000m and 4000m,at a sliding velocity of 3m/s.Microstructures of worn samples were observed under scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),and x-ray diffraction(XRD)and the results were analyzed.Mechanical properties were evaluated using microhardness test.After 5 passes of MDF,the average grain size was found to be 30±4p m,22±3 pm,and 18±3 pm,in Mg-2%Zn,Mg-4%Zn,and Mg-6%Zn alloys,respectively,with significant improvement in hardness in all cases.Wear resistance was improved after MDF processing,as well as,with increment in Zn content in Mg alloy.However,it decreased when the load and the sliding distance increased.Worn surface exhibited ploughing,delamination,plastic deformation,and wear debris along sliding direction,and abrasive wear was found to be the main mechanism.
文摘Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in the seismic data,which is a time-intensive task.Many researchers have utilized a robust Grey-level co-occurrence matrix(GLCM)-based texture attributes to map reservoir heterogeneity.However,these attributes take seismic data as input and might not be sensitive to lateral lithology variation.To incorporate the lithology information,we have developed an innovative impedance-based texture approach using GLCM workflow by integrating 3D acoustic impedance volume(a rock propertybased attribute)obtained from a deep convolution network-based impedance inversion.Our proposed workflow is anticipated to be more sensitive toward mapping lateral changes than the conventional amplitude-based texture approach,wherein seismic data is used as input.To evaluate the improvement,we applied the proposed workflow to the full-stack 3D seismic data from the Poseidon field,NW-shelf,Australia.This study demonstrates that a better demarcation of reservoir gas sands with improved lateral continuity is achievable with the presented approach compared to the conventional approach.In addition,we assess the implication of multi-stage faulting on facies distribution for effective reservoir characterization.This study also suggests a well-bounded potential reservoir facies distribution along the parallel fault lines.Thus,the proposed approach provides an efficient strategy by integrating the impedance information with texture attributes to improve the inference on reservoir heterogeneity,which can serve as a promising tool for identifying potential reservoir zones for both production benefits and fluid storage.
基金Projects(52274402,52174381)supported by the National Natural Science Foundation of China。
文摘The effect of forging on the microstructure and texture evolution of a high Nb containing Ti-45Al-7Nb-0.3W(at.%)alloy was investigated by X-ray diffractometer(XRD),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).The results show that the as-cast alloy is mainly composed of α_(2)/γ lamellar colonies with a mean size of 70μm,but the hot-forged pancake displays a near duplex microstructure(DP).Kinking and bending of lamellar colonies,deformation twinning and dynamic recrystallization(DRX)occur during hot forging.Meanwhile,dense dislocations in theβphase after forging suggest that the high-temperature β phase with a disordered structure is favorable for improving the hot-workability of the alloy.Unlike the common TiAl casting texture,the solidification process of the investigated as-cast alloy with high Nb content is completely via the β phase region,resulting in the formation of a<110>γ fiber texture where the<110>γ aligns parallel to the heat-flow direction.In comparison,the relatively strong<001>and weak<302>texture components in the as-forged alloy are attributed to the deformation twinning.After annealing,static recrystallization occurs at the twin boundary and intersections,which weakens the deformation texture.
文摘An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.
基金Projects (50774026, 50875059) supported by the National Natural Science Foundation of ChinaProject (20070420023) supported by the China Postdoctoral Science FoundationProject (2008AA03A239) supported by the National High-tech Research and Development Program of China
文摘The homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging was investigated.Wheel hubs were produced using direct and compound loading.The results show that the microstructure and mechanical properties are inhomogeneous in direct forged samples.The microstructure of the wall is coarser than that of the base,and the mechanical properties are lower and some defects are detected at the wheel corner.Using compound loading,the microstructure and mechanical properties of the wall are improved evidently.With increasing feeding amount,the microstructure and mechanical properties become more homogeneous.The defects disappear when the feeding amount is 4 mm.The forged wheel hubs could obtain fine and homogeneous microstructure with grain size of 20-30 μm,tensile strength of 355 MPa and elongation of 10% when the feeding amount is 10 mm.The microstructure and mechanical properties of liquid forged workpieces could be controlled and homogenized using compound loading.
文摘Microstructure and mechanical properties of AZ61 Mg alloy during isothermal multi-axial forging (MAF) were studied. The mechanisms of grain refinement and relationship between the microstructures and mechanical properties were discussed. The results show that the average grain size decreases with increasing the number of MAF passes. The grains are significantly refined at the 1st and 2nd MAF passes, and gradually refined at higher MAF passes. The initial grain size of 148 lam decreases to about 14 gm after 6 MAF passes. The grain refinement occurs mainly by continuous dynamic recrystallization. With increasing the MAF passes, both the tensile strength and the elongation to failure of the alloy are significantly enhanced.
基金Projects(51205319,51101119)supported by the National Natural Science Foundation of China
文摘Microstructure and tensile properties of TC21 titanium alloy after near-isothermal forging with different parameters plus solution treatment and aging were investigated. It is found that the residual β matrix, which was strengthened by fine secondary α platelets forming during aging, exists in all the samples; while primary equiaxed α phase, bent lamellar α phase and α plates are simultaneously or individually present in one sample. The strength of alloy increases proportionally with increasing the content of residual β matrix, which is the result of increasing α/β interphase boundary. The plasticity of alloy has a downward trend as the content of residual β matrix increases. This attributes to the increase of fine secondary α platelets, which are cut by dislocations during the deformation. Additionally, coarse α plates with long axis parallel to the maximum resolved shear stress(MRSS) also reduce the plasticity of TC21 alloy.
文摘The mechanical properties, microstructure and tensile fracture of Ti-6.5AI-IMo-IV-2Zr large section bars produced by three diffrent forging processes were investigated. The results show that when billet forging and finish forging were conducted by means of fullering at high and low temperature of r-region, respectively; the microstructure of forged bar is coarse Widmanstaten structure; the mechanical properties, especially the reduction of cross-sectional area, are poor, and the room temperature tensile fracture presents a brittle feature. While billet forging was carried out by upset-fullering at high temperature of the r-region, and finish forging was proceeded through fullering at (a+fl)-region, the microstructure of forged bar was a duplex structure, the bar has better comprehensive mechanical properties, and the room temperature tensile fracture reveals a ductile feature. In order to obtain qualified Ti-6.SAI-IMo-IV-2Zr alloy bar, it is the key that as-cast microstructure should be completely broken during billet forging, and the forging temperature and deformation are also well controlled upon finishing forging.
基金Project (2011CB605505) supported by the National Basic Research Program of ChinaProject (2011QNZT041) supported by the freedom explore Program of Central South University,ChinaProject (84088) supported by the and Postdoctoral Foundation Supported Project of Central South University,China
文摘The hot forging of large-scale P/M TiAl alloy billet deformation was investigated based on a joint application of Deform-3D-based numerical simulation and physical simulation techniques.The temperature dependence on the thermal and mechanical properties of the billet was considered and the optimum hot working temperature of packed TiAl alloy was 1150-1200 °C.Based on the simulation,the material flow and thermo mechanical field variables,such as stress,strain,and temperature distribution were obtained and the relationships of load—displacement and load—time were figured out.To verify the validity of the simulation results,the experiments were also carried out in a forging plant,and a pancake with diameter of 150 mm was obtained exhibiting a regular shape.
文摘In order to reveal the differences caused by forging and rolling process for titanium ingots, hot compression behavior, mechanical properties and the microstructures of forged billets and rolled ones were investigated in detail using Gleeble-1500 thermal mechanical simulator, universal testing machine and optical microscope (OM). The compression deformation experimental data of commercially pure titanium (CP-Ti) were mapped to be a T vs lg diagram in which data fall into three distinct regions, i.e., three-stage work hardening, two-stage work hardening and flow softening, which can be separated by border lines at 17.5 and 15.4 for lg Z, where Z represents the Zener-Hollomon parameter. The deformation twin is found to have higher Z-value corresponding to the work hardening region. The differences in microstructures and mechanical properties for two kinds of billets indicate that forged billet consists of deformation twins and some twin intersections, and many twins cross the grain boundaries. However, nearly no twins can be seen in the microstructure of billet formed by rolling under optical microscope (OM), but there are equiaxed and platelike grains. Tensile tests and Vickers hardness test indicate that yield strength, tensile strength and microhardness of the samples after forging are higher than those after rolling.
基金Projects (2005CCA06400, 2007CB613807) supported by the National Basic Research Program of ChinaProject (CHD2012JC078) supported by the Special Fund for Basic Scientific Research of Central Colleges, China+1 种基金Project (0111201) supported by the State Key Laboratory for Machanical Behavior of MaterialsProject (20110474) supported by Natural Science Basic Research Plan in Shaanxi Province of China
文摘Tensile properties of a new α+Ti2Cu alloy after solid forging at 950 °C and semi-solid forging at 1 000 °C and 1 050 °C were investigated over the temperature range of 20-600 °C. The results reveal that high strength and low ductility are obtained in all semi-solid forged alloys. Tensile properties decrease as the semi-solid forging temperature increases, and cleavage fractures are observed after semi-solid forging at 1 050 °C. The variations in tensile properties are attributed to the coarse microstructures obtained in the semi-solid alloys. It is found that the elevated semi-solid temperatures lead to more liquid precipitates along the prior grain boundaries, which increases the peritectic precipitation and formation of Ti2Cu precipitation zones during re-solidification. Recrystallization heat treatment leads to fine microstructure of semi-solid forged alloys, resulting in improvement of tensile properties.