This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and ...This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures.展开更多
In order to accurately analyze vibration characteristics and site effects of loess hills under moving load of a highspeed train,four types of loess hill models under railway viaduct was established by ABAQUS of finite...In order to accurately analyze vibration characteristics and site effects of loess hills under moving load of a highspeed train,four types of loess hill models under railway viaduct was established by ABAQUS of finite element analysis software by field test.The dynamic response and stability of loess hills under two different vibration sources under high-speed train load were studied by using two-dimensional equivalent linear response timehistory analysis,and the influence of the mechanical parameters of loess on the vibration of different types of loess hill was analyzed.Results show that there are obvious differences between peak displacement cloud maps of loess hills under the railway viaduct under gravity and train load action.We analyzed the influence of the change of elastic modulus on vibration propagation of soil of foundation and loess knoll,and found that the change of elastic modulus of soil in different position of foundation has more effect on vibration propagation than that of loess knoll soil.At the same time,the vertical acceleration cloud maps of the four types of loess hills are obviously different.展开更多
An efficient computational approach based on substructure methodology is proposed to analyze the viaduct-pile foundation-soil dynamic interaction under train loads.Thetrain-viaductsubsystemissolvedusingthe dynamic sti...An efficient computational approach based on substructure methodology is proposed to analyze the viaduct-pile foundation-soil dynamic interaction under train loads.Thetrain-viaductsubsystemissolvedusingthe dynamic stiffness integration method,and its accuracy is verified by the existing analytical solution for a moving vehicle on a simply supported beam.For the pile foundation-soil subsystem,the geometric and material properties of piles and soils are assumed to be invariable along the azimuth direction.By introducing the equivalent stiffness of grouped piles,the governing equations of pile foundation-soil interaction are simplified based on Fourier decomposition method,so the three-dimensional problem is decomposedintoseveraltwo-dimensionalaxisymmetricfinite element models.The pile foundation-soil interaction model is verified by field measurements due to shaker loading at pile foundation top.In addition,these two substructures are coupled with the displacement compatibility condition at interface of pier bottom and pile foundation top.Finally,the proposed train-viaduct-pile foundation-soil interaction model was validated by field tests.The results show that the proposed model can predict vibrations of pile foundation and soil accurately,thereby providing a basis for the prediction of pile-soil foundation settlement.The frequency spectra of the vibration in Beijing-Tianjin high-speed railway demonstrated that the main frequencies of the pier top and ground surface are below 100 and 30 Hz,respectively.展开更多
文摘This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures.
基金supported by Science and Technology Project of State Grid Corporation of China(Grant No.5200-202230098A1-1-ZN)。
文摘In order to accurately analyze vibration characteristics and site effects of loess hills under moving load of a highspeed train,four types of loess hill models under railway viaduct was established by ABAQUS of finite element analysis software by field test.The dynamic response and stability of loess hills under two different vibration sources under high-speed train load were studied by using two-dimensional equivalent linear response timehistory analysis,and the influence of the mechanical parameters of loess on the vibration of different types of loess hill was analyzed.Results show that there are obvious differences between peak displacement cloud maps of loess hills under the railway viaduct under gravity and train load action.We analyzed the influence of the change of elastic modulus on vibration propagation of soil of foundation and loess knoll,and found that the change of elastic modulus of soil in different position of foundation has more effect on vibration propagation than that of loess knoll soil.At the same time,the vertical acceleration cloud maps of the four types of loess hills are obviously different.
基金supported by the National Natural Science Foundation of China(Nos.52125803,51988101 and 52008369)。
文摘An efficient computational approach based on substructure methodology is proposed to analyze the viaduct-pile foundation-soil dynamic interaction under train loads.Thetrain-viaductsubsystemissolvedusingthe dynamic stiffness integration method,and its accuracy is verified by the existing analytical solution for a moving vehicle on a simply supported beam.For the pile foundation-soil subsystem,the geometric and material properties of piles and soils are assumed to be invariable along the azimuth direction.By introducing the equivalent stiffness of grouped piles,the governing equations of pile foundation-soil interaction are simplified based on Fourier decomposition method,so the three-dimensional problem is decomposedintoseveraltwo-dimensionalaxisymmetricfinite element models.The pile foundation-soil interaction model is verified by field measurements due to shaker loading at pile foundation top.In addition,these two substructures are coupled with the displacement compatibility condition at interface of pier bottom and pile foundation top.Finally,the proposed train-viaduct-pile foundation-soil interaction model was validated by field tests.The results show that the proposed model can predict vibrations of pile foundation and soil accurately,thereby providing a basis for the prediction of pile-soil foundation settlement.The frequency spectra of the vibration in Beijing-Tianjin high-speed railway demonstrated that the main frequencies of the pier top and ground surface are below 100 and 30 Hz,respectively.