The polarimetric radar network in Jiangsu Province has just been operationalized since 2020.The first intense precipitation event observed by this polarimetric radar network and disdrometer occurred during August 28-2...The polarimetric radar network in Jiangsu Province has just been operationalized since 2020.The first intense precipitation event observed by this polarimetric radar network and disdrometer occurred during August 28-29,2020 and caused severe flooding and serious damage in eastern Jiangsu Province.The microphysics and kinetics for this heavy precipitation convective storm is diagnosed in this study,in order to promote the application of this polarimetric radar network.Drop size distribution(DSD)of this event is estimated from measurements of a ground disdrometer,and the corresponding three-dimensional atmospheric microphysical features are obtained from the multiple polarimetric radars.According to features of updraft and lighting,the evolution of the convective storm is divided into four stages:developing,mature with lightning,mature without lightning and dissipating.The DSD of this event is featured by a large number of raindrops and a considerable number of large raindrops.The microphysical characteristics are similar to those of warm-rain process,and ice-phase microphysical processes are active in the mature stages.The composite vertical structure of the convective storm indicates that deep ZDR and KDP columns coincide with strong updrafts during both mature stages.The hierarchical microphysical structure retrieved by the Hydrometeor Identification Algorithm(HID)shows that depositional growth has occurred above the melting level,and aggregation is the most widespread ice-phase process at the-10℃level or higher.During negative lightning activity,the presence of strongest updrafts and a large amount of ice-phase graupel by riming between the 0℃and-35℃layers generate strong negative electric fields within the cloud.These convective storms are typical warm clouds with very high precipitation efficiency,which cause high concentration of raindrops,especially the presence of large raindrops within a short period of time.The ice-phase microphysical processes above the melting layer also play an important role in the triggering and enhancing of precipitation.展开更多
Based on a satellite constellation composed of two GRACE-type satellite formations with different inclinations(near polar orbit + low inclination) and the theory of repeat orbit cycle, we discuss the methods for selec...Based on a satellite constellation composed of two GRACE-type satellite formations with different inclinations(near polar orbit + low inclination) and the theory of repeat orbit cycle, we discuss the methods for selecting medium-low inclinations for global and local gravity fields. The effects of this constellation configuration on gravity field inversion are comparatively analyzed using a whole-course dynamics simulation. The results show that compared with the single GRACE-type satellite formation,the use of satellite constellations with different inclination configurations improves the gravity solution precision by 34%. The inclusion of multi-directional observations can improve the spatio-temporal resolution of the satellite missions, and yield gravity field solutions with higher isotropic sensitivity.Furthermore, it is necessary to select the optimal low inclination according to the study area, which will have a significant influence on the gravity field solution.展开更多
We report the design concept and performance of a compact, lightweight and economical imaging polarimeter, the Triple Range Imager and POLarimeter(TRIPOL), capable of simultaneous optical imagery and polarimetry. TRIP...We report the design concept and performance of a compact, lightweight and economical imaging polarimeter, the Triple Range Imager and POLarimeter(TRIPOL), capable of simultaneous optical imagery and polarimetry. TRIPOL splits the beam in wavelengths from 400 to 830 nm into g′-, r′-and i′-bands with two dichroic mirrors, and measures polarization with an achromatic half-waveplate and a wire grid polarizer. The simultaneity makes TRIPOL a useful tool for small telescopes for the photometry and polarimetry of time variable and wavelength dependent phenomena. TRIPOL is designed for a Cassegrain telescope with an aperture of^1 m. This paper presents the engineering considerations of TRIPOL and compares the expected with observed performance. Using the Lulin 1-m telescope and 100 seconds of integration, the limiting magnitudes are g′~19.0 mag, r′~18.5 mag and i′~18.0 mag with a signal-to-noise ratio of 10, in agreement with design expectation. The instrumental polarization is measured to be^0.3% in the three bands. Two applications, one to the star-forming cloud IC 5146 and the other to the young variable GM Cep, are presented as demonstrations.展开更多
基金Project of Shenzhen Science and Technology Innovation Commission(KCXFZ20201221173610028)National Key R&D Program of China(2021YFC3000804)+2 种基金Beijige Funding from Jiangsu Research Institute of Meteorological Science(BJG202211)Basic Scientific Research and Operation Foundation of CAMS(2021Z004)National Natural Science Foundation of China(42005011,41830969)。
文摘The polarimetric radar network in Jiangsu Province has just been operationalized since 2020.The first intense precipitation event observed by this polarimetric radar network and disdrometer occurred during August 28-29,2020 and caused severe flooding and serious damage in eastern Jiangsu Province.The microphysics and kinetics for this heavy precipitation convective storm is diagnosed in this study,in order to promote the application of this polarimetric radar network.Drop size distribution(DSD)of this event is estimated from measurements of a ground disdrometer,and the corresponding three-dimensional atmospheric microphysical features are obtained from the multiple polarimetric radars.According to features of updraft and lighting,the evolution of the convective storm is divided into four stages:developing,mature with lightning,mature without lightning and dissipating.The DSD of this event is featured by a large number of raindrops and a considerable number of large raindrops.The microphysical characteristics are similar to those of warm-rain process,and ice-phase microphysical processes are active in the mature stages.The composite vertical structure of the convective storm indicates that deep ZDR and KDP columns coincide with strong updrafts during both mature stages.The hierarchical microphysical structure retrieved by the Hydrometeor Identification Algorithm(HID)shows that depositional growth has occurred above the melting level,and aggregation is the most widespread ice-phase process at the-10℃level or higher.During negative lightning activity,the presence of strongest updrafts and a large amount of ice-phase graupel by riming between the 0℃and-35℃layers generate strong negative electric fields within the cloud.These convective storms are typical warm clouds with very high precipitation efficiency,which cause high concentration of raindrops,especially the presence of large raindrops within a short period of time.The ice-phase microphysical processes above the melting layer also play an important role in the triggering and enhancing of precipitation.
基金financially supported by the National Key R&D Program of China (2018YFC1503503)the National Natural Science Foundation of China (41974012)。
文摘Based on a satellite constellation composed of two GRACE-type satellite formations with different inclinations(near polar orbit + low inclination) and the theory of repeat orbit cycle, we discuss the methods for selecting medium-low inclinations for global and local gravity fields. The effects of this constellation configuration on gravity field inversion are comparatively analyzed using a whole-course dynamics simulation. The results show that compared with the single GRACE-type satellite formation,the use of satellite constellations with different inclination configurations improves the gravity solution precision by 34%. The inclusion of multi-directional observations can improve the spatio-temporal resolution of the satellite missions, and yield gravity field solutions with higher isotropic sensitivity.Furthermore, it is necessary to select the optimal low inclination according to the study area, which will have a significant influence on the gravity field solution.
基金supported by Grant-in-Aid for Science Research from the Ministry of Education, Culture, Sports and Technology of Japan
文摘We report the design concept and performance of a compact, lightweight and economical imaging polarimeter, the Triple Range Imager and POLarimeter(TRIPOL), capable of simultaneous optical imagery and polarimetry. TRIPOL splits the beam in wavelengths from 400 to 830 nm into g′-, r′-and i′-bands with two dichroic mirrors, and measures polarization with an achromatic half-waveplate and a wire grid polarizer. The simultaneity makes TRIPOL a useful tool for small telescopes for the photometry and polarimetry of time variable and wavelength dependent phenomena. TRIPOL is designed for a Cassegrain telescope with an aperture of^1 m. This paper presents the engineering considerations of TRIPOL and compares the expected with observed performance. Using the Lulin 1-m telescope and 100 seconds of integration, the limiting magnitudes are g′~19.0 mag, r′~18.5 mag and i′~18.0 mag with a signal-to-noise ratio of 10, in agreement with design expectation. The instrumental polarization is measured to be^0.3% in the three bands. Two applications, one to the star-forming cloud IC 5146 and the other to the young variable GM Cep, are presented as demonstrations.