The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform met...The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform method(IHHT)is proposed to address the limitations of tradi-tional time-domain vibration analyses,such as low accuracy and mode mixing.This paper first clas-sifies the buckling degree of the friction components.Next,wavelet packet transform(WPT)isapplied to the vibration signals of different buckling plates to partition them into distinct fre-quency bands.Then,the instantaneous features are extracted by empirical mode decomposition(EMD)and Hilbert transform(HT)to discarding extraneous intrinsic mode function(IMF)com-ponents.Comparative analyses of Hilbert spectral entropy and time-domain features confirm theenhanced precision of IHHT under specific classifiers,which is better than traditional methods.展开更多
The brain is among the most energetically costly organs in vertebrates,and thus trade-offs have been hypothesized to exert constraints on brain size evolution.The energy trade-off hypothesis(ETH) predicts that reducin...The brain is among the most energetically costly organs in vertebrates,and thus trade-offs have been hypothesized to exert constraints on brain size evolution.The energy trade-off hypothesis(ETH) predicts that reducing the energy consumption of reproduction or other costly tissues should compensate for the cost of a large brain.Egg production in birds requires a large proportion of the total energy budget,and a clutch mass in some bird species can outweigh the body mass of the female.To date,this hypothesis has mainly been tested in mammals and ectothermic animals such as anurans and fishes.We collated data on adult brain size,body mass and eggproduction traits such as clutch size,egg mass and annual broods from published studies,and conducted a phylogenetic comparative test of the interplay between egg-production investment and brain size evolution across bird species.After controlling for phylogenetic relationships and body size,we find a negative correlation between brain size and clutch size across 1395 species,which favored ETH.However,when egg mass was integrated in models,positive associations were detected between brain size and mass of eggs(via egg mass,clutch mass and annual total egg mass).Our results suggest that brain size trades off against egg-production only via certain aspects(e.g.,clutch size).By contrast,a positive relationship between brain size and total egg reproduction(e.g.,clutch mass and annual total egg mass) implied increased total energy budget outweighing energy allocation across bird species.Our study shows that there is no general energy trade-off between brain size and eggreproduction investment,and suggests that brain size evolution follows mixed strategies across bird species.展开更多
Weather conditions play a pivotal role in embryo development and parental incubation costs,potentially impacting the clutch size and incubation behavior of birds.Understanding these effects is crucial for bird conserv...Weather conditions play a pivotal role in embryo development and parental incubation costs,potentially impacting the clutch size and incubation behavior of birds.Understanding these effects is crucial for bird conservation.Reeves’ s Pheasant(Syrmaticus reevesii) is a threatened species endemic to China,which is characterized by female-only incubation.However,there is a lack of information regarding the impact of weather conditions on clutch size and incubation behavior in this species.Using satellite tracking,we tracked 27 wild female Reeves’ s Pheasants from 2020 to 2023 in Hubei Province,China.We explored their clutch size and incubation behavior,as well as their responses to ambient temperature and precipitation.Clutch size averaged 7.75 ±1.36,had an association with average ambient temperature and average daily precipitation during the egglaying period,and was potentially linked to female breeding attempts.Throughout the incubation period,females took an average of 0.73 ±0.46 recesses every 24 h,with an average recess duration of 100.80 ±73.37 min and an average nest attendance of 92.98 ±5.27%.They showed a unimodal recess pattern in which nest departures peaked primarily between 13:00 and 16:00.Furthermore,females rarely left nests when daily precipitation was high.Recess duration and nest attendance were influenced by the interaction between daily mean ambient temperature and daily precipitation,as well as day of incubation.Additionally,there was a positive correlation between clutch size and recess duration.These results contribute valuable insights into the lifehistory features of this endangered species.展开更多
Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S)...Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S) equation based on laminar flow is presented to model the drag torque. Pressure and speed distribution in radial and circumferential directions are deduced. The theoretical analysis reveals that oil flow acceleration in radial direction caused by centrifugal force is the key reason for the shrinking of oil film as constant feeding flow rate. The peak drag torque occurs at the beginning of oil film shrinking. A variable is introduced to describe effective oil film area and drag torque after oil film shrinking is well evaluated with the variable. Under the working condition, tests were made to obtain drag torque curves at different clutch speed and oil viscosity. The tests confirm that simulation results agree with test data. The model performs well in the prediction of drag torque and lays a theoretical foundation to reduce it.展开更多
Considering the surface tension effect and centrifugal effect, a mathematical model based on Reynolds equation for predicting the drag torque of disengage wet clutches is presented. The model indicates that the equiva...Considering the surface tension effect and centrifugal effect, a mathematical model based on Reynolds equation for predicting the drag torque of disengage wet clutches is presented. The model indicates that the equivalent radius is a function of clutch speed and flow rate. The drag torque achieves its peak at a critical speed. Above this speed, drag torque drops due to the shrinking of the oil film. The model also points out that viscosity and flow rate effects on drag torque. Experimental results indicate that the model is reason-able and it performs well for predicting the drag torque peak.展开更多
Wet multi-plate clutches are relevant components of modern drivetrain applications,not only in terms of function but also safety and comfort.Especially at the beginning of their lifetime,distinct changes of the fricti...Wet multi-plate clutches are relevant components of modern drivetrain applications,not only in terms of function but also safety and comfort.Especially at the beginning of their lifetime,distinct changes of the friction behavior may occur and make the actuation of the clutch challenging.This transcript describes the typical running-in behavior of wet multi-plate clutches and gives a general definition for running-in of clutches.Moreover,a new test method to systematically investigate the running-in behavior of clutches is introduced.This test method contains a test procedure to characterize the running-in behavior on different load levels.Furthermore,a multi-stage procedure to evaluate and characterize the running-in behavior of clutches with mathematical approaches and new characteristic values is given.The quality of the test method is demonstrated on the example of three different tribological systems from dual clutch transmissions(DCT)and automatic transmissions(AT)application using paper friction linings.展开更多
The diaphragm spring clutch static characteristics to improve the starting quality for cars equipped with automated mechanical transmission (AMT) were modeled and simulated. First, axial stiffness of clutch cushion ...The diaphragm spring clutch static characteristics to improve the starting quality for cars equipped with automated mechanical transmission (AMT) were modeled and simulated. First, axial stiffness of clutch cushion spring and characteristic curves of diaphragm spring were theoretically and experimentally studied. Then, model of transfer characteristics of the normal force was built, with special conscen on the abrasion of friction discs and the influence of temperature to diaphragm spring. Finally, the model was tested in practical starting for cars equipped with AMT, which showed that the starting quality was significantly improved. The experimental results showed that the proposed model was precise enough to be implemented conveniently.展开更多
The effects of contact surface on dynamic wedging behavior of the roller and inner-ring of the overrunning clutch in a dual-turbine torque converter were investigated to reveal the friction self- locking mechanism and...The effects of contact surface on dynamic wedging behavior of the roller and inner-ring of the overrunning clutch in a dual-turbine torque converter were investigated to reveal the friction self- locking mechanism and dynamic process. Planar strain clutch models including roller, inner-ring and outer-ring were built, and transient wedging process was analyzed with an explicit dynamics meth- od. The modeling of stress and strain distribution and variation of two kinds of contact surfaces show that there are three stages named slipping, wedging and binding respectively during whole wed- ging process. Meanwhile the geometric structures of contact surfaces greatly influence the peak stress and strain distribution of the wedging process of the roller and inner-ring. The load bearing performance of contact surfaces with logarithmic spiral curve is better than that with straight line. Our study provides theoretical foundation for design and further optimization of wedging contact surface of an overrunning clutch in a dual-turbine hydrodynamic torque converter.展开更多
In order to analyze characteristics of Cobot cooperation with a human in a shared workspace, the model of a non-holonormic constraint joint mechanism and its control model were constructed based on double over-running...In order to analyze characteristics of Cobot cooperation with a human in a shared workspace, the model of a non-holonormic constraint joint mechanism and its control model were constructed based on double over-running clutches. The simulation analysis was carried out and it validated passive and constraint features of the joint mechanism. In terms of Cobot components, the control model of Cobot following a desired trajectory was built up. The simulation studies illustrate that the Cobot can track a desired trajectory and possess passive and constraint features ; a human supplies operation force that makes Cobot move, and a computer system con- trois its motion trajectory. So it can meet the requirements of Cobot collaboration with an operator. The Cobot model can be used in applications of material moving, parts assembly and some situations requiring man-machine cooperation and so on.展开更多
Traditional mathematical models cannot predict and explain the phenomenon by which the drag torque(DT)in wet clutches rises in the high-speed zone.In order to evaluate the DT in such conditions,a two-phase air-fluid m...Traditional mathematical models cannot predict and explain the phenomenon by which the drag torque(DT)in wet clutches rises in the high-speed zone.In order to evaluate the DT in such conditions,a two-phase air-fluid mathematical model for a DT with grooves was elaborated.The mathematical model was based on the theory of viscous fluid flow.A two-phase volume of fluid model was also used to investigate the distribution and volume fraction of air and fluid.Experiments on three friction plates with different grooves were conducted to validate the resulting mathematical model.It was found that the gap between plates decreased in the high-speed zone,thereby producing an increase of the DT in the high-speed zone.These results support the understanding of the physical phenomena relating to disengaged wet clutches,and provide a theoretical basis for the future improvement of drive systems.展开更多
The conventional Continuously Variable Transmission (CVT) has been classified as belt-type or toroidal CVTs. Each CVT is fundamentally composed of several components to transmit the frictional force or torque genera...The conventional Continuously Variable Transmission (CVT) has been classified as belt-type or toroidal CVTs. Each CVT is fundamentally composed of several components to transmit the frictional force or torque generated by the driving force. Since the conventional CVTs use friction force, their energy (force or torque) transfer efficiency might be inferior due to slippage and pressure between the transmission components. Consequently, we propose a new type of structural CVT. The CVT we proposed in this paper means a combined-type transmission with quadric crank chains and one-way clutches.展开更多
The friction judder characteristics during clutch engagement have a significant influence on the NVH of a driveline.In this research,the judder characteristics of automobile clutch friction materials and experimental ...The friction judder characteristics during clutch engagement have a significant influence on the NVH of a driveline.In this research,the judder characteristics of automobile clutch friction materials and experimental verification are studied.First,considering the stick-slip phenomenon in the clutch engagement process,a detailed 9-degrees-of-freedom(DOF)model including the body,each cylinder of the engine,clutch and friction lining,torsional damper,transmission and other driveline parts is established,and the calculation formula of friction torque in the clutch engagement process is determined.Second,the influence of the friction gradient characteristics on the amplification or attenuation of the automobile friction judder is analyzed,and the corresponding stability analysis and the numerical simulation of different friction gradient values are carried out with MATLAB/Simulink software.Finally,judder bench test equipment and a corresponding damping test program are developed,and the relationship between the friction coefficient gradient characteristics and the system damping is analyzed.After a large number of tests,the evaluation basis of the test is determined.The research results show that the friction lining with negative gradient characteristics of the friction coefficient will have a judder signal.When the friction gradient value is less than-0.005 s/m,the judder signal of the measured clutch cannot be completely attenuated,and the judder phenomenon occurs.When the friction gradient is greater than-0.005 s/m,the judder signal can be significantly suppressed and the system connection tends to be stable.展开更多
文摘The wet multi-disc clutches are extensively used in various transmission systems,withone of the most prevalent failure modes being the buckling deformation of friction components.Animproved Hilbert-Huang transform method(IHHT)is proposed to address the limitations of tradi-tional time-domain vibration analyses,such as low accuracy and mode mixing.This paper first clas-sifies the buckling degree of the friction components.Next,wavelet packet transform(WPT)isapplied to the vibration signals of different buckling plates to partition them into distinct fre-quency bands.Then,the instantaneous features are extracted by empirical mode decomposition(EMD)and Hilbert transform(HT)to discarding extraneous intrinsic mode function(IMF)com-ponents.Comparative analyses of Hilbert spectral entropy and time-domain features confirm theenhanced precision of IHHT under specific classifiers,which is better than traditional methods.
基金National Natural Science Foun-dation of China(Grant No.32170481 and Grant No.3221153042).
文摘The brain is among the most energetically costly organs in vertebrates,and thus trade-offs have been hypothesized to exert constraints on brain size evolution.The energy trade-off hypothesis(ETH) predicts that reducing the energy consumption of reproduction or other costly tissues should compensate for the cost of a large brain.Egg production in birds requires a large proportion of the total energy budget,and a clutch mass in some bird species can outweigh the body mass of the female.To date,this hypothesis has mainly been tested in mammals and ectothermic animals such as anurans and fishes.We collated data on adult brain size,body mass and eggproduction traits such as clutch size,egg mass and annual broods from published studies,and conducted a phylogenetic comparative test of the interplay between egg-production investment and brain size evolution across bird species.After controlling for phylogenetic relationships and body size,we find a negative correlation between brain size and clutch size across 1395 species,which favored ETH.However,when egg mass was integrated in models,positive associations were detected between brain size and mass of eggs(via egg mass,clutch mass and annual total egg mass).Our results suggest that brain size trades off against egg-production only via certain aspects(e.g.,clutch size).By contrast,a positive relationship between brain size and total egg reproduction(e.g.,clutch mass and annual total egg mass) implied increased total energy budget outweighing energy allocation across bird species.Our study shows that there is no general energy trade-off between brain size and eggreproduction investment,and suggests that brain size evolution follows mixed strategies across bird species.
基金supported by the National Natural Science Foundation of China (grant number 31872240)。
文摘Weather conditions play a pivotal role in embryo development and parental incubation costs,potentially impacting the clutch size and incubation behavior of birds.Understanding these effects is crucial for bird conservation.Reeves’ s Pheasant(Syrmaticus reevesii) is a threatened species endemic to China,which is characterized by female-only incubation.However,there is a lack of information regarding the impact of weather conditions on clutch size and incubation behavior in this species.Using satellite tracking,we tracked 27 wild female Reeves’ s Pheasants from 2020 to 2023 in Hubei Province,China.We explored their clutch size and incubation behavior,as well as their responses to ambient temperature and precipitation.Clutch size averaged 7.75 ±1.36,had an association with average ambient temperature and average daily precipitation during the egglaying period,and was potentially linked to female breeding attempts.Throughout the incubation period,females took an average of 0.73 ±0.46 recesses every 24 h,with an average recess duration of 100.80 ±73.37 min and an average nest attendance of 92.98 ±5.27%.They showed a unimodal recess pattern in which nest departures peaked primarily between 13:00 and 16:00.Furthermore,females rarely left nests when daily precipitation was high.Recess duration and nest attendance were influenced by the interaction between daily mean ambient temperature and daily precipitation,as well as day of incubation.Additionally,there was a positive correlation between clutch size and recess duration.These results contribute valuable insights into the lifehistory features of this endangered species.
基金supported by National Defense Arming Pre-researching Project(Grant No. 40402060102)
文摘Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S) equation based on laminar flow is presented to model the drag torque. Pressure and speed distribution in radial and circumferential directions are deduced. The theoretical analysis reveals that oil flow acceleration in radial direction caused by centrifugal force is the key reason for the shrinking of oil film as constant feeding flow rate. The peak drag torque occurs at the beginning of oil film shrinking. A variable is introduced to describe effective oil film area and drag torque after oil film shrinking is well evaluated with the variable. Under the working condition, tests were made to obtain drag torque curves at different clutch speed and oil viscosity. The tests confirm that simulation results agree with test data. The model performs well in the prediction of drag torque and lays a theoretical foundation to reduce it.
基金Sponsored by the Ministerial Level Advanced Research Foundation(10506024)
文摘Considering the surface tension effect and centrifugal effect, a mathematical model based on Reynolds equation for predicting the drag torque of disengage wet clutches is presented. The model indicates that the equivalent radius is a function of clutch speed and flow rate. The drag torque achieves its peak at a critical speed. Above this speed, drag torque drops due to the shrinking of the oil film. The model also points out that viscosity and flow rate effects on drag torque. Experimental results indicate that the model is reason-able and it performs well for predicting the drag torque peak.
基金The presented results are based on the research project FVA no.343/Ⅲ undertaken by the Research Association for Drive Technology e.V.(FVA).
文摘Wet multi-plate clutches are relevant components of modern drivetrain applications,not only in terms of function but also safety and comfort.Especially at the beginning of their lifetime,distinct changes of the friction behavior may occur and make the actuation of the clutch challenging.This transcript describes the typical running-in behavior of wet multi-plate clutches and gives a general definition for running-in of clutches.Moreover,a new test method to systematically investigate the running-in behavior of clutches is introduced.This test method contains a test procedure to characterize the running-in behavior on different load levels.Furthermore,a multi-stage procedure to evaluate and characterize the running-in behavior of clutches with mathematical approaches and new characteristic values is given.The quality of the test method is demonstrated on the example of three different tribological systems from dual clutch transmissions(DCT)and automatic transmissions(AT)application using paper friction linings.
基金Supported by the National Natural Science Foundation of China(51275038)
文摘The diaphragm spring clutch static characteristics to improve the starting quality for cars equipped with automated mechanical transmission (AMT) were modeled and simulated. First, axial stiffness of clutch cushion spring and characteristic curves of diaphragm spring were theoretically and experimentally studied. Then, model of transfer characteristics of the normal force was built, with special conscen on the abrasion of friction discs and the influence of temperature to diaphragm spring. Finally, the model was tested in practical starting for cars equipped with AMT, which showed that the starting quality was significantly improved. The experimental results showed that the proposed model was precise enough to be implemented conveniently.
基金Supported by the National Natural Science Foundation of China(51475041)the Ministerial Level Advanced Research Foundation(40402060103)the Ministerial Basic Products Innovation Program(VTDP2104)
文摘The effects of contact surface on dynamic wedging behavior of the roller and inner-ring of the overrunning clutch in a dual-turbine torque converter were investigated to reveal the friction self- locking mechanism and dynamic process. Planar strain clutch models including roller, inner-ring and outer-ring were built, and transient wedging process was analyzed with an explicit dynamics meth- od. The modeling of stress and strain distribution and variation of two kinds of contact surfaces show that there are three stages named slipping, wedging and binding respectively during whole wed- ging process. Meanwhile the geometric structures of contact surfaces greatly influence the peak stress and strain distribution of the wedging process of the roller and inner-ring. The load bearing performance of contact surfaces with logarithmic spiral curve is better than that with straight line. Our study provides theoretical foundation for design and further optimization of wedging contact surface of an overrunning clutch in a dual-turbine hydrodynamic torque converter.
基金Sponsored by the National Natural Science Foundation of China(Grant No60275030)
文摘In order to analyze characteristics of Cobot cooperation with a human in a shared workspace, the model of a non-holonormic constraint joint mechanism and its control model were constructed based on double over-running clutches. The simulation analysis was carried out and it validated passive and constraint features of the joint mechanism. In terms of Cobot components, the control model of Cobot following a desired trajectory was built up. The simulation studies illustrate that the Cobot can track a desired trajectory and possess passive and constraint features ; a human supplies operation force that makes Cobot move, and a computer system con- trois its motion trajectory. So it can meet the requirements of Cobot collaboration with an operator. The Cobot model can be used in applications of material moving, parts assembly and some situations requiring man-machine cooperation and so on.
基金support from the research project of basic product innovation of MIIT(VTDP3203).
文摘Traditional mathematical models cannot predict and explain the phenomenon by which the drag torque(DT)in wet clutches rises in the high-speed zone.In order to evaluate the DT in such conditions,a two-phase air-fluid mathematical model for a DT with grooves was elaborated.The mathematical model was based on the theory of viscous fluid flow.A two-phase volume of fluid model was also used to investigate the distribution and volume fraction of air and fluid.Experiments on three friction plates with different grooves were conducted to validate the resulting mathematical model.It was found that the gap between plates decreased in the high-speed zone,thereby producing an increase of the DT in the high-speed zone.These results support the understanding of the physical phenomena relating to disengaged wet clutches,and provide a theoretical basis for the future improvement of drive systems.
文摘The conventional Continuously Variable Transmission (CVT) has been classified as belt-type or toroidal CVTs. Each CVT is fundamentally composed of several components to transmit the frictional force or torque generated by the driving force. Since the conventional CVTs use friction force, their energy (force or torque) transfer efficiency might be inferior due to slippage and pressure between the transmission components. Consequently, we propose a new type of structural CVT. The CVT we proposed in this paper means a combined-type transmission with quadric crank chains and one-way clutches.
基金Supported by National Natural Science Foundation of China (Grant No.51775249)。
文摘The friction judder characteristics during clutch engagement have a significant influence on the NVH of a driveline.In this research,the judder characteristics of automobile clutch friction materials and experimental verification are studied.First,considering the stick-slip phenomenon in the clutch engagement process,a detailed 9-degrees-of-freedom(DOF)model including the body,each cylinder of the engine,clutch and friction lining,torsional damper,transmission and other driveline parts is established,and the calculation formula of friction torque in the clutch engagement process is determined.Second,the influence of the friction gradient characteristics on the amplification or attenuation of the automobile friction judder is analyzed,and the corresponding stability analysis and the numerical simulation of different friction gradient values are carried out with MATLAB/Simulink software.Finally,judder bench test equipment and a corresponding damping test program are developed,and the relationship between the friction coefficient gradient characteristics and the system damping is analyzed.After a large number of tests,the evaluation basis of the test is determined.The research results show that the friction lining with negative gradient characteristics of the friction coefficient will have a judder signal.When the friction gradient value is less than-0.005 s/m,the judder signal of the measured clutch cannot be completely attenuated,and the judder phenomenon occurs.When the friction gradient is greater than-0.005 s/m,the judder signal can be significantly suppressed and the system connection tends to be stable.