In this paper,we explore a distributed collaborative caching and computing model to support the distribution of adaptive bit rate video streaming.The aim is to reduce the average initial buffer delay and improve the q...In this paper,we explore a distributed collaborative caching and computing model to support the distribution of adaptive bit rate video streaming.The aim is to reduce the average initial buffer delay and improve the quality of user experience.Considering the difference between global and local video popularities and the time-varying characteristics of video popularity,a two-stage caching scheme is proposed to push popular videos closer to users and minimize the average initial buffer delay.Based on both long-term content popularity and short-term content popularity,the proposed caching solution is decouple into the proactive cache stage and the cache update stage.In the proactive cache stage,we develop a proactive cache placement algorithm that can be executed in an off-peak period.In the cache update stage,we propose a reactive cache update algorithm to update the existing cache policy to minimize the buffer delay.Simulation results verify that the proposed caching algorithms can reduce the initial buffer delay efficiently.展开更多
Mobile Edge Computing(MEC)is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible.In an MEC environment,servers are deployed closer to mobile termin...Mobile Edge Computing(MEC)is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible.In an MEC environment,servers are deployed closer to mobile terminals to exploit storage infrastructure,improve content delivery efficiency,and enhance user experience.However,due to the limited capacity of edge servers,it remains a significant challenge to meet the changing,time-varying,and customized needs for highly diversified content of users.Recently,techniques for caching content at the edge are becoming popular for addressing the above challenges.It is capable of filling the communication gap between the users and content providers while relieving pressure on remote cloud servers.However,existing static caching strategies are still inefficient in handling the dynamics of the time-varying popularity of content and meeting users’demands for highly diversified entity data.To address this challenge,we introduce a novel method for content caching over MEC,i.e.,PRIME.It synthesizes a content popularity prediction model,which takes users’stay time and their request traces as inputs,and a deep reinforcement learning model for yielding dynamic caching schedules.Experimental results demonstrate that PRIME,when tested upon the MovieLens 1M dataset for user request patterns and the Shanghai Telecom dataset for user mobility,outperforms its peers in terms of cache hit rates,transmission latency,and system cost.展开更多
Due to the explosion of network data traffic and IoT devices,edge servers are overloaded and slow to respond to the massive volume of online requests.A large number of studies have shown that edge caching can solve th...Due to the explosion of network data traffic and IoT devices,edge servers are overloaded and slow to respond to the massive volume of online requests.A large number of studies have shown that edge caching can solve this problem effectively.This paper proposes a distributed edge collaborative caching mechanism for Internet online request services scenario.It solves the problem of large average access delay caused by unbalanced load of edge servers,meets users’differentiated service demands and improves user experience.In particular,the edge cache node selection algorithm is optimized,and a novel edge cache replacement strategy considering the differentiated user requests is proposed.This mechanism can shorten the response time to a large number of user requests.Experimental results show that,compared with the current advanced online edge caching algorithm,the proposed edge collaborative caching strategy in this paper can reduce the average response delay by 9%.It also increases the user utility by 4.5 times in differentiated service scenarios,and significantly reduces the time complexity of the edge caching algorithm.展开更多
With the development of internet of vehicles,the traditional centralized content caching mode transmits content through the core network,which causes a large delay and cannot meet the demands for delay-sensitive servi...With the development of internet of vehicles,the traditional centralized content caching mode transmits content through the core network,which causes a large delay and cannot meet the demands for delay-sensitive services.To solve these problems,on basis of vehicle caching network,we propose an edge colla-borative caching scheme.Road side unit(RSU)and mobile edge computing(MEC)are used to collect vehicle information,predict and cache popular content,thereby provide low-latency content delivery services.However,the storage capa-city of a single RSU severely limits the edge caching performance and cannot handle intensive content requests at the same time.Through content sharing,col-laborative caching can relieve the storage burden on caching servers.Therefore,we integrate RSU and collaborative caching to build a MEC-assisted vehicle edge collaborative caching(MVECC)scheme,so as to realize the collaborative caching among cloud,edge and vehicle.MVECC uses deep reinforcement learning to pre-dict what needs to be cached on RSU,which enables RSUs to cache more popular content.In addition,MVECC also introduces a mobility-aware caching replace-ment scheme at the edge network to reduce redundant cache and improving cache efficiency,which allows RSU to dynamically replace the cached content in response to the mobility of vehicles.The simulation results show that the pro-posed MVECC scheme can improve cache performance in terms of energy cost and content hit rate.展开更多
An adaptive mechanism is presented to reduce bandwidth usage and to optimize the use of computing resources of heterogeneous computer mixes utilized in CSCD to reach the goal of collaborative design in distributed-syn...An adaptive mechanism is presented to reduce bandwidth usage and to optimize the use of computing resources of heterogeneous computer mixes utilized in CSCD to reach the goal of collaborative design in distributed-synchronous mode. The mechanism is realized on a C/S architecture based on operation information sharing. Firstly, messages are aggregated into packets on the client. Secondly, an outgoing-message weight priority queue with traffic adjusting technique is cached on the server. Thirdly, an incoming-message queue is cached on the client. At last, the results of implementing the proposed scheme in a simple collaborative design environment are presented.展开更多
Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the eff...Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems.展开更多
日益旺盛的跨云存算联调需求对跨云数据访问速度提出较高要求.因此,跨云数据访问速度较高的基于数据冗余技术(纠删码和多副本)的跨云数据访问方法逐渐受到关注.其中,基于纠删码的跨云数据访问方法因其存储开销较低、容错性较高而成为当...日益旺盛的跨云存算联调需求对跨云数据访问速度提出较高要求.因此,跨云数据访问速度较高的基于数据冗余技术(纠删码和多副本)的跨云数据访问方法逐渐受到关注.其中,基于纠删码的跨云数据访问方法因其存储开销较低、容错性较高而成为当前研究热点.为通过缩短编码块传输用时以提高数据访问速度,现有基于纠删码的跨云数据访问方法尝试引入缓存技术并优化编码数据访问方案.然而,由于现有方法的缓存管理粒度较粗且未协同优化缓存管理与编码数据访问方案,导致其存在缓存命中量低、缓存命中增效低、低传输速度编码块访问量大等问题,使得其编码块传输用时仍较长.为此,首先提出了一种基于星际文件系统(interplanetary file system,IPFS)的跨云存储系统框架(IPFS-based cross-cloud storage system framework,IBCS),可基于IPFS数据分片管理机制实现细粒度的缓存管理,从而可提高缓存命中量.然后,提出一种面向存算联调的跨云纠删码自适应数据访问方法(adaptive erasure-coded data access method for cross-cloud collaborative scheduling of storage and computation,AECAM).AECAM以编码块(含缓存编码块)与数据访问节点的分布为依据评估数据访问过程中各编码块的传输速度,并据此制定可避免访问低传输速度编码块的编码数据访问方案.此外,AECAM可识别出其制定编码数据访问方案时易选中且实际传输速度较低的编码块,并将其缓存在数据访问节点附近,从而可同时提高缓存命中量和命中增效.最后,基于IBCS和AECAM构建了面向跨云存算联调的存储系统(cross-cloud storage system for collaborative scheduling of storage and computation,C2S2).跨云环境下的实验表明,相较于现有引入缓存的基于纠删码的存储系统,C2S2可以将数据访问速度提高75.22%~81.29%.展开更多
Moving data from cloud to the edge network can effectively reduce traffic burden on the core network,and edge collaboration can further improve the edge caching capacity and the quality of service(QoS).However,it is d...Moving data from cloud to the edge network can effectively reduce traffic burden on the core network,and edge collaboration can further improve the edge caching capacity and the quality of service(QoS).However,it is difficult for various edge caching devices to cooperate due to the lack of trust and the existence of malicious nodes.In this paper,blockchain which has the distributed and immutable characteristics is utilized to build a trustworthy collaborative edge caching scheme to make full use of the storage resources of various edge devices.The collaboration process is described in this paper,and a proof of credit(PoC)protocol is proposed,in which credit and tokens are used to encourage nodes to cache and transmit more content in honest behavior.Untrusted nodes will pay for their malicious actions such as tampering or deleting cached data.Since each node chooses strategy independently to maximize its benefits in an environment of mutual influence,a non-cooperative game model is designed to study the caching behavior among edge nodes.The existence of Nash equilibrium(NE)is proved in this game,so the edge server(ES)can choose the optimal caching strategy for all collaborative devices,including itself,to obtain the maximum rewards.Simulation results show that the system can save mining overhead as well as organize a trusted collaborative edge caching effectively.展开更多
基金the National Natural Science Foundation of China under grants 61901078,61871062,and U20A20157in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)under grant 2021FNA04008+5 种基金in part by the China Postdoctoral Science Foundation under grant 2022MD713692in part by the Chongqing Postdoctoral Science Special Foundation under grant 2021XM2018in part by the Natural Science Foundation of Chongqing under grant cstc2020jcyj-zdxmX0024in part by University Innovation Research Group of Chongqing under grant CXQT20017in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant KJQN202000626in part by the Youth Innovation Group Support Program of ICE Discipline of CQUPT under grant SCIE-QN-2022-04.
文摘In this paper,we explore a distributed collaborative caching and computing model to support the distribution of adaptive bit rate video streaming.The aim is to reduce the average initial buffer delay and improve the quality of user experience.Considering the difference between global and local video popularities and the time-varying characteristics of video popularity,a two-stage caching scheme is proposed to push popular videos closer to users and minimize the average initial buffer delay.Based on both long-term content popularity and short-term content popularity,the proposed caching solution is decouple into the proactive cache stage and the cache update stage.In the proactive cache stage,we develop a proactive cache placement algorithm that can be executed in an off-peak period.In the cache update stage,we propose a reactive cache update algorithm to update the existing cache policy to minimize the buffer delay.Simulation results verify that the proposed caching algorithms can reduce the initial buffer delay efficiently.
文摘Mobile Edge Computing(MEC)is a promising technology that provides on-demand computing and efficient storage services as close to end users as possible.In an MEC environment,servers are deployed closer to mobile terminals to exploit storage infrastructure,improve content delivery efficiency,and enhance user experience.However,due to the limited capacity of edge servers,it remains a significant challenge to meet the changing,time-varying,and customized needs for highly diversified content of users.Recently,techniques for caching content at the edge are becoming popular for addressing the above challenges.It is capable of filling the communication gap between the users and content providers while relieving pressure on remote cloud servers.However,existing static caching strategies are still inefficient in handling the dynamics of the time-varying popularity of content and meeting users’demands for highly diversified entity data.To address this challenge,we introduce a novel method for content caching over MEC,i.e.,PRIME.It synthesizes a content popularity prediction model,which takes users’stay time and their request traces as inputs,and a deep reinforcement learning model for yielding dynamic caching schedules.Experimental results demonstrate that PRIME,when tested upon the MovieLens 1M dataset for user request patterns and the Shanghai Telecom dataset for user mobility,outperforms its peers in terms of cache hit rates,transmission latency,and system cost.
基金This work is supported by the National Natural Science Foundation of China(62072465)the Key-Area Research and Development Program of Guang Dong Province(2019B010107001).
文摘Due to the explosion of network data traffic and IoT devices,edge servers are overloaded and slow to respond to the massive volume of online requests.A large number of studies have shown that edge caching can solve this problem effectively.This paper proposes a distributed edge collaborative caching mechanism for Internet online request services scenario.It solves the problem of large average access delay caused by unbalanced load of edge servers,meets users’differentiated service demands and improves user experience.In particular,the edge cache node selection algorithm is optimized,and a novel edge cache replacement strategy considering the differentiated user requests is proposed.This mechanism can shorten the response time to a large number of user requests.Experimental results show that,compared with the current advanced online edge caching algorithm,the proposed edge collaborative caching strategy in this paper can reduce the average response delay by 9%.It also increases the user utility by 4.5 times in differentiated service scenarios,and significantly reduces the time complexity of the edge caching algorithm.
基金supported by the Science and Technology Project of State Grid Corporation of China:Research and Application of Key Technologies in Virtual Operation of Information and Communication Resources.
文摘With the development of internet of vehicles,the traditional centralized content caching mode transmits content through the core network,which causes a large delay and cannot meet the demands for delay-sensitive services.To solve these problems,on basis of vehicle caching network,we propose an edge colla-borative caching scheme.Road side unit(RSU)and mobile edge computing(MEC)are used to collect vehicle information,predict and cache popular content,thereby provide low-latency content delivery services.However,the storage capa-city of a single RSU severely limits the edge caching performance and cannot handle intensive content requests at the same time.Through content sharing,col-laborative caching can relieve the storage burden on caching servers.Therefore,we integrate RSU and collaborative caching to build a MEC-assisted vehicle edge collaborative caching(MVECC)scheme,so as to realize the collaborative caching among cloud,edge and vehicle.MVECC uses deep reinforcement learning to pre-dict what needs to be cached on RSU,which enables RSUs to cache more popular content.In addition,MVECC also introduces a mobility-aware caching replace-ment scheme at the edge network to reduce redundant cache and improving cache efficiency,which allows RSU to dynamically replace the cached content in response to the mobility of vehicles.The simulation results show that the pro-posed MVECC scheme can improve cache performance in terms of energy cost and content hit rate.
基金This project was supported by National "863" High Technology Research and Development Program of China(2001AA412010).
文摘An adaptive mechanism is presented to reduce bandwidth usage and to optimize the use of computing resources of heterogeneous computer mixes utilized in CSCD to reach the goal of collaborative design in distributed-synchronous mode. The mechanism is realized on a C/S architecture based on operation information sharing. Firstly, messages are aggregated into packets on the client. Secondly, an outgoing-message weight priority queue with traffic adjusting technique is cached on the server. Thirdly, an incoming-message queue is cached on the client. At last, the results of implementing the proposed scheme in a simple collaborative design environment are presented.
基金supported by National Natural Science Foundation of China(NSFC)under Grant Number T2350710232.
文摘Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems.
文摘日益旺盛的跨云存算联调需求对跨云数据访问速度提出较高要求.因此,跨云数据访问速度较高的基于数据冗余技术(纠删码和多副本)的跨云数据访问方法逐渐受到关注.其中,基于纠删码的跨云数据访问方法因其存储开销较低、容错性较高而成为当前研究热点.为通过缩短编码块传输用时以提高数据访问速度,现有基于纠删码的跨云数据访问方法尝试引入缓存技术并优化编码数据访问方案.然而,由于现有方法的缓存管理粒度较粗且未协同优化缓存管理与编码数据访问方案,导致其存在缓存命中量低、缓存命中增效低、低传输速度编码块访问量大等问题,使得其编码块传输用时仍较长.为此,首先提出了一种基于星际文件系统(interplanetary file system,IPFS)的跨云存储系统框架(IPFS-based cross-cloud storage system framework,IBCS),可基于IPFS数据分片管理机制实现细粒度的缓存管理,从而可提高缓存命中量.然后,提出一种面向存算联调的跨云纠删码自适应数据访问方法(adaptive erasure-coded data access method for cross-cloud collaborative scheduling of storage and computation,AECAM).AECAM以编码块(含缓存编码块)与数据访问节点的分布为依据评估数据访问过程中各编码块的传输速度,并据此制定可避免访问低传输速度编码块的编码数据访问方案.此外,AECAM可识别出其制定编码数据访问方案时易选中且实际传输速度较低的编码块,并将其缓存在数据访问节点附近,从而可同时提高缓存命中量和命中增效.最后,基于IBCS和AECAM构建了面向跨云存算联调的存储系统(cross-cloud storage system for collaborative scheduling of storage and computation,C2S2).跨云环境下的实验表明,相较于现有引入缓存的基于纠删码的存储系统,C2S2可以将数据访问速度提高75.22%~81.29%.
基金supported by the National Natural Science Foundation of China(61771070)。
文摘Moving data from cloud to the edge network can effectively reduce traffic burden on the core network,and edge collaboration can further improve the edge caching capacity and the quality of service(QoS).However,it is difficult for various edge caching devices to cooperate due to the lack of trust and the existence of malicious nodes.In this paper,blockchain which has the distributed and immutable characteristics is utilized to build a trustworthy collaborative edge caching scheme to make full use of the storage resources of various edge devices.The collaboration process is described in this paper,and a proof of credit(PoC)protocol is proposed,in which credit and tokens are used to encourage nodes to cache and transmit more content in honest behavior.Untrusted nodes will pay for their malicious actions such as tampering or deleting cached data.Since each node chooses strategy independently to maximize its benefits in an environment of mutual influence,a non-cooperative game model is designed to study the caching behavior among edge nodes.The existence of Nash equilibrium(NE)is proved in this game,so the edge server(ES)can choose the optimal caching strategy for all collaborative devices,including itself,to obtain the maximum rewards.Simulation results show that the system can save mining overhead as well as organize a trusted collaborative edge caching effectively.