To elucidate the behavior of slag films in an electroslag remelting process, the fluoride evaporation and crystallization of CaF2–CaO–Al2O3–(TiO2) slags were studied using the single hot thermocouple technique. T...To elucidate the behavior of slag films in an electroslag remelting process, the fluoride evaporation and crystallization of CaF2–CaO–Al2O3–(TiO2) slags were studied using the single hot thermocouple technique. The crystallization mechanism of TiO2-bearing slag was identified based on kinetic analysis. The fluoride evaporation and incubation time of crystallization in TiO2-free slag are found to considerably decrease with decreasing isothermal temperature down to 1503 K. Fish-bone and flower-like CaO crystals precipitate in TiO2-free slag melt, which is accompanied by CaF2 evaporation from slag melt above 1503 K. Below 1503 K, only near-spherical CaF2 crystals form with an incubation time of less than 1 s, and the crystallization is completed within 1 s. The addition of 8.1wt% TiO2 largely prevents the fluoride evaporation from slag melt and promotes the slag crystallization. TiO2 addition leads to the precipitation of needle-like perovskite(CaTiO3) crystals instead of CaO crystals in the slag. The crystallization of perovskite(CaTiO3) occurs by bulk nucleation and diffusion-controlled one-dimensional growth.展开更多
A new technology for the crystallization of ammonium paratungstate with coarse grain has beenstudied. The factors influencing the physi-chemical properties of ammonium paratungstate crystal, such astemperature, concen...A new technology for the crystallization of ammonium paratungstate with coarse grain has beenstudied. The factors influencing the physi-chemical properties of ammonium paratungstate crystal, such astemperature, concentration, seed crystal, agitation. etc. were examined. It is necessary to keep high temperature and low concentration in the process. and the addition of seed crystal and agitation with air is also in favor of the system. Ammonium paratungstate crystal with particle size of 36-42 μm and apparent density of2. 0-2. 2 g·cm- 3 were obtained by controlling suitable technological parameters.展开更多
1 Introduction Crystallization is one of important unit operations in the chemical production process,which requires not only the crystal product with high purity and yield,but also the available particle size of the ...1 Introduction Crystallization is one of important unit operations in the chemical production process,which requires not only the crystal product with high purity and yield,but also the available particle size of the crystal products to ensure product quality.Crystallization process is affected by展开更多
In order to concentrate the diluted sulfuric acid from the titanium dioxide(TiO2)production of sulphate process,a new concentration process was proposed by coupling chemical dehydration and multi-effect evaporation.Th...In order to concentrate the diluted sulfuric acid from the titanium dioxide(TiO2)production of sulphate process,a new concentration process was proposed by coupling chemical dehydration and multi-effect evaporation.The ferrous sulfate monohydrate(FeSO4·H2O),as the dehydrant,was added to the diluted sulfuric acid to form ferrous sulfate heptahydrate(FeSO4·7H2O)according to the H2SO4-FeSO4-H2O phase diagrams,which partially removes the water.This process was named as Chemical Dehydration Process.The residual water was further removed by two-effect evaporation and finally 70 wt%sulfuric acid was obtained.The FeSO4·H2O can be regenerated through drying and dehydration of FeSO4·7H2O.The results show that FeSO4·H2O is the most suitable dehydrant,the optimal reaction time of chemical dehydration process is 30 min,and low temperature is favorable for the dehydration reaction.45.17%of the entire removed water can be removed by chemical dehydration from the diluted sulfuric acid.This chemical dehydration process is also energy efficient with 24.76%saving compared with the direct evaporation process.Furthermore,51.21%of the FeSO4 dissolved originally in the diluted sulfuric acid are precipitated out during the chemical dehydration,which greatly reduces the solid precipitation and effectively alleviates the scaling in the subsequent multi-effect evaporation process.展开更多
A wastewater evaporation-desalination pretreatment method was introduced to remove the Na+ and K+ salts in volatile organic compounds (VOCs) wastewater before it was fed into the incinerator. VOCs in the wastewater we...A wastewater evaporation-desalination pretreatment method was introduced to remove the Na+ and K+ salts in volatile organic compounds (VOCs) wastewater before it was fed into the incinerator. VOCs in the wastewater were volatilized in the evaporation system and then the vapor was combusted in an incinerator. Simulated phenol wastewater containing sodium chloride was evaporated and concentrated and sodium chloride was crystallized in different parameters. The experimental results showed that the higher initial concentration of sodium chloride increases the ratio of volatilization of VOCs, which was due to the effect of “salting out” (a decrease in the solubility of the nonelectrolyte in the solution, or more rigorously, an increase in its activity coef-ficient, caused by the salt addition (Furter and Cook, 1967)). When evaporation speed was increased from 1.67 ml/min to 2.73 ml/min, the total removal coefficient of sodium chloride was about 99.88%~99.99%. This pretreatment procedure eliminates the slag phenomenon caused by Na+ and K+ salts during wastewater incineration, so the incinerator could operate continuously, and the wastewater evaporation could increase the heat value of wastewater, and the operation cost would be reduced.展开更多
Research the evaporating crystalization process of the magnesium sulfate subtypes brine at high temperature from Dalangtan salt lake in Qinghai province.It was revealed that the salt lake is a typical subtype magnesium
Well-formed crystals of emerald, Be3AI2Si6O18:Cr, were easily grown from an Na2O-MoO3 flux by an isothermal technique. The crystal growth was conducted by heating a mixture of solute and flux at 1 100 ℃ for 24 h. The...Well-formed crystals of emerald, Be3AI2Si6O18:Cr, were easily grown from an Na2O-MoO3 flux by an isothermal technique. The crystal growth was conducted by heating a mixture of solute and flux at 1 100 ℃ for 24 h. The evaporation loss of flux depended on the amount of Na2O added to MoO3. Emerald crystals of lengths up to 2.1 mm and widths of 1. 4 mm were grown. The crystal sizes were dependent on the evaporation loss of the flux. The obtained crystals were transparent and exhibited the typical emerald-green color. The form of the emerald crystals was a twelve-sided prism bounded by well-developed faces. The aspect ratios were in the region of 1. 4 to 2. 3. The density was (2. 64±0.02) g/cm3. The IR absorption bands were in good agreement with the literature data.展开更多
In this analysis, the single crystal of L-Proline Succinate (LPS) has been successfully synthesized and the purity of ma- terial has been increased by repeated recrystallization process. Single crystal was grown by ad...In this analysis, the single crystal of L-Proline Succinate (LPS) has been successfully synthesized and the purity of ma- terial has been increased by repeated recrystallization process. Single crystal was grown by adopting the method of growing in a slow evaporation solution using water as solvent at room temperature. The LPS single crystal has been synthesized by taking equimolar quantity of L-Proline and succinic acid, by mixing them thoroughly using deionized water. The prepared concentrated solution was placed in an undisturbed condition, and the solution was inspected regu- larly. The single crystal has been harvested over a period of 1 month. The same crystal was characterized by different techniques for finding its suitability for device fabrications. The grown crystal was characterized by Single crystal XRD, Powder XRD, FTIR, UV-vis-NIR, DTA/TGA and SHG analyses, respectively. The observed results from various char- acterization show the suitability for NLO application. The second harmonic generation of this grown crystal was checked using Kurtz Perry technique which showed positive results. The UV cut-off wavelength and the decomposition temperature of this grown crystal were found to be good when compared with the existing organic crystals.展开更多
The chemical, physical, and biological properties of more than two millions of proteins which follow to be synthesized by Pharmaceutical Industry, can be anticipated (by using their XRD diffrac-tograms) if they will b...The chemical, physical, and biological properties of more than two millions of proteins which follow to be synthesized by Pharmaceutical Industry, can be anticipated (by using their XRD diffrac-tograms) if they will be grown from aqueous drops as high quality, large volume single-crystals. This is not a simple task and usually the growing process is seen as art rather than a science. The growing is expensive, time consuming, and finally an amorphous aggregate may result instead one single-crystal. In this article, we show for the first time how one single crystal can be grown in large volume hanging drops through their fast evaporation. The single nucleation is determined by choosing the proper sense of gravitational force relative to the drop triple line contact. In a special configuration, single-crystals of glycine and threonine were rapidly grown.展开更多
基金financially supported by the Fundamental Research Funds for the Central Universities (No. FRF-TP-14-009A1)the National Natural Science Foundation of China (No. 51444004)
文摘To elucidate the behavior of slag films in an electroslag remelting process, the fluoride evaporation and crystallization of CaF2–CaO–Al2O3–(TiO2) slags were studied using the single hot thermocouple technique. The crystallization mechanism of TiO2-bearing slag was identified based on kinetic analysis. The fluoride evaporation and incubation time of crystallization in TiO2-free slag are found to considerably decrease with decreasing isothermal temperature down to 1503 K. Fish-bone and flower-like CaO crystals precipitate in TiO2-free slag melt, which is accompanied by CaF2 evaporation from slag melt above 1503 K. Below 1503 K, only near-spherical CaF2 crystals form with an incubation time of less than 1 s, and the crystallization is completed within 1 s. The addition of 8.1wt% TiO2 largely prevents the fluoride evaporation from slag melt and promotes the slag crystallization. TiO2 addition leads to the precipitation of needle-like perovskite(CaTiO3) crystals instead of CaO crystals in the slag. The crystallization of perovskite(CaTiO3) occurs by bulk nucleation and diffusion-controlled one-dimensional growth.
文摘A new technology for the crystallization of ammonium paratungstate with coarse grain has beenstudied. The factors influencing the physi-chemical properties of ammonium paratungstate crystal, such astemperature, concentration, seed crystal, agitation. etc. were examined. It is necessary to keep high temperature and low concentration in the process. and the addition of seed crystal and agitation with air is also in favor of the system. Ammonium paratungstate crystal with particle size of 36-42 μm and apparent density of2. 0-2. 2 g·cm- 3 were obtained by controlling suitable technological parameters.
基金financial support of National Nature Science Foundation (21376178)TIDA giant growth plan (2011-XJR13020)Tianjin Science and technology support program (12ZCDZSF06900)
文摘1 Introduction Crystallization is one of important unit operations in the chemical production process,which requires not only the crystal product with high purity and yield,but also the available particle size of the crystal products to ensure product quality.Crystallization process is affected by
基金the State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization of China for its financial supportthe financial support of National Natural Science Foundation of China(Grant No.21576168)Science and Technology Cooperation Fund of Sichuan University-Panzhihua(No:2018CDPZH-23-SCU)。
文摘In order to concentrate the diluted sulfuric acid from the titanium dioxide(TiO2)production of sulphate process,a new concentration process was proposed by coupling chemical dehydration and multi-effect evaporation.The ferrous sulfate monohydrate(FeSO4·H2O),as the dehydrant,was added to the diluted sulfuric acid to form ferrous sulfate heptahydrate(FeSO4·7H2O)according to the H2SO4-FeSO4-H2O phase diagrams,which partially removes the water.This process was named as Chemical Dehydration Process.The residual water was further removed by two-effect evaporation and finally 70 wt%sulfuric acid was obtained.The FeSO4·H2O can be regenerated through drying and dehydration of FeSO4·7H2O.The results show that FeSO4·H2O is the most suitable dehydrant,the optimal reaction time of chemical dehydration process is 30 min,and low temperature is favorable for the dehydration reaction.45.17%of the entire removed water can be removed by chemical dehydration from the diluted sulfuric acid.This chemical dehydration process is also energy efficient with 24.76%saving compared with the direct evaporation process.Furthermore,51.21%of the FeSO4 dissolved originally in the diluted sulfuric acid are precipitated out during the chemical dehydration,which greatly reduces the solid precipitation and effectively alleviates the scaling in the subsequent multi-effect evaporation process.
文摘A wastewater evaporation-desalination pretreatment method was introduced to remove the Na+ and K+ salts in volatile organic compounds (VOCs) wastewater before it was fed into the incinerator. VOCs in the wastewater were volatilized in the evaporation system and then the vapor was combusted in an incinerator. Simulated phenol wastewater containing sodium chloride was evaporated and concentrated and sodium chloride was crystallized in different parameters. The experimental results showed that the higher initial concentration of sodium chloride increases the ratio of volatilization of VOCs, which was due to the effect of “salting out” (a decrease in the solubility of the nonelectrolyte in the solution, or more rigorously, an increase in its activity coef-ficient, caused by the salt addition (Furter and Cook, 1967)). When evaporation speed was increased from 1.67 ml/min to 2.73 ml/min, the total removal coefficient of sodium chloride was about 99.88%~99.99%. This pretreatment procedure eliminates the slag phenomenon caused by Na+ and K+ salts during wastewater incineration, so the incinerator could operate continuously, and the wastewater evaporation could increase the heat value of wastewater, and the operation cost would be reduced.
基金financially supported with General Project of Nat-ural Science Foundation of China (No. 21373252)
文摘Research the evaporating crystalization process of the magnesium sulfate subtypes brine at high temperature from Dalangtan salt lake in Qinghai province.It was revealed that the salt lake is a typical subtype magnesium
文摘Well-formed crystals of emerald, Be3AI2Si6O18:Cr, were easily grown from an Na2O-MoO3 flux by an isothermal technique. The crystal growth was conducted by heating a mixture of solute and flux at 1 100 ℃ for 24 h. The evaporation loss of flux depended on the amount of Na2O added to MoO3. Emerald crystals of lengths up to 2.1 mm and widths of 1. 4 mm were grown. The crystal sizes were dependent on the evaporation loss of the flux. The obtained crystals were transparent and exhibited the typical emerald-green color. The form of the emerald crystals was a twelve-sided prism bounded by well-developed faces. The aspect ratios were in the region of 1. 4 to 2. 3. The density was (2. 64±0.02) g/cm3. The IR absorption bands were in good agreement with the literature data.
文摘In this analysis, the single crystal of L-Proline Succinate (LPS) has been successfully synthesized and the purity of ma- terial has been increased by repeated recrystallization process. Single crystal was grown by adopting the method of growing in a slow evaporation solution using water as solvent at room temperature. The LPS single crystal has been synthesized by taking equimolar quantity of L-Proline and succinic acid, by mixing them thoroughly using deionized water. The prepared concentrated solution was placed in an undisturbed condition, and the solution was inspected regu- larly. The single crystal has been harvested over a period of 1 month. The same crystal was characterized by different techniques for finding its suitability for device fabrications. The grown crystal was characterized by Single crystal XRD, Powder XRD, FTIR, UV-vis-NIR, DTA/TGA and SHG analyses, respectively. The observed results from various char- acterization show the suitability for NLO application. The second harmonic generation of this grown crystal was checked using Kurtz Perry technique which showed positive results. The UV cut-off wavelength and the decomposition temperature of this grown crystal were found to be good when compared with the existing organic crystals.
文摘The chemical, physical, and biological properties of more than two millions of proteins which follow to be synthesized by Pharmaceutical Industry, can be anticipated (by using their XRD diffrac-tograms) if they will be grown from aqueous drops as high quality, large volume single-crystals. This is not a simple task and usually the growing process is seen as art rather than a science. The growing is expensive, time consuming, and finally an amorphous aggregate may result instead one single-crystal. In this article, we show for the first time how one single crystal can be grown in large volume hanging drops through their fast evaporation. The single nucleation is determined by choosing the proper sense of gravitational force relative to the drop triple line contact. In a special configuration, single-crystals of glycine and threonine were rapidly grown.