The study presented here was carried out to obtain the actual solids flow rate by the combination of electrical resistance tomography and electromagnetic flow meter. A new in-situ measurement method based on measureme...The study presented here was carried out to obtain the actual solids flow rate by the combination of electrical resistance tomography and electromagnetic flow meter. A new in-situ measurement method based on measurements of the Electromagnetic Flow Meters (EFM) and Electrical Resistance Tomography (ERT) to study the flow rates of individual phases in a vertical flow was proposed. The study was based on laboratory experiments that were carded out with a 50 mm vertical flow rig for a number of sand concentrations and different mixture velocities. A range of sand slurries with median particle size from 212 μm to 355 μm was tested. The solid concentration by volume covered was 5% and 15%, and the corresponding density of 5% was 1078 kg/m^3 and of 15% was 1238 kg/m^3. The flow velocity was between 1.5 m/s and 3.0 m/s. A total of 6 experimental tests were conducted. The equivalent liquid model was adopted to validate in-situ volumetric solids fraction and calculate the slip velocity. The results show that the ERT technique can be used in conjunction with an electromagnetic flow meter as a way of measurement of slurry flow rate in a vertical pipe flow. However it should be emphasized that the EFM results must be treated with reservation when the flow pattern at the EFM mounting position is a non-homogenous flow. The flow rate obtained by the EFM should be corrected considering the slip velocity and the flow pattern.展开更多
The Knowledge of turbulent flow developing inside and around the bottom trawl net is of great importance not only for improving the hydrodynamic performance of the gear but also for the selectivity via the fish respon...The Knowledge of turbulent flow developing inside and around the bottom trawl net is of great importance not only for improving the hydrodynamic performance of the gear but also for the selectivity via the fish response,such as the herding response or escape behavior.The 3-D Electromagnetic Current Velocity Meter(ECVM)measurements were performed to investigate the effect of turbulent flow on the bottom trawl net performance and to analyze the turbulence intensity and velocity ratio inside and around different parts of the trawl net.Proper orthogonal decomposition(POD)method was applied in order to extract the phase averaged mean velocity field of turbulent flow from each available ECVM instantaneous velocity.The results demonstrated the existence of turbulence flow,consisting of turbulent boundary layer flow and the turbulence due to the trawl wake developing all inside and around the bottom trawl net.Increasing input streamwise velocity results in faster trawl movement and a significant turbulent flow.The maximum turbulence intensity inside and around trawl wing,square part,first belly,second belly,third belly,cod-end is 0.95%,1.34%,3.40%,4.10%,4.25%and 3.80%,respectively.It was found that the mean velocity field in a turbulent flow inside and around trawl net cod-end recovered on the average was~77.58%of the input streamwise velocity.It is~12.92%,~13.07%,~11.40%,~13.00%and~0.45%less than that inside and around trawl wing,square part,first belly,second belly,and third belly of the bottom trawl net,respectively.The turbulent flow behavior depends strongly on the structure oscillation,input streamwise velocity and,porosity of the net structure.It is necessary to take into account the velocity reduction inside and around a different part of the trawl net to improve the entire drag force determination,cod-end design,and further selectivity control of the fishing gear.展开更多
基金supported by the China-UK joint project of a study of multi-phase flow meter on EIT and CTA Techniques: Royal Society (Grant No. 15933)
文摘The study presented here was carried out to obtain the actual solids flow rate by the combination of electrical resistance tomography and electromagnetic flow meter. A new in-situ measurement method based on measurements of the Electromagnetic Flow Meters (EFM) and Electrical Resistance Tomography (ERT) to study the flow rates of individual phases in a vertical flow was proposed. The study was based on laboratory experiments that were carded out with a 50 mm vertical flow rig for a number of sand concentrations and different mixture velocities. A range of sand slurries with median particle size from 212 μm to 355 μm was tested. The solid concentration by volume covered was 5% and 15%, and the corresponding density of 5% was 1078 kg/m^3 and of 15% was 1238 kg/m^3. The flow velocity was between 1.5 m/s and 3.0 m/s. A total of 6 experimental tests were conducted. The equivalent liquid model was adopted to validate in-situ volumetric solids fraction and calculate the slip velocity. The results show that the ERT technique can be used in conjunction with an electromagnetic flow meter as a way of measurement of slurry flow rate in a vertical pipe flow. However it should be emphasized that the EFM results must be treated with reservation when the flow pattern at the EFM mounting position is a non-homogenous flow. The flow rate obtained by the EFM should be corrected considering the slip velocity and the flow pattern.
基金Projects supported by the National Natural Science Foundation of China(Grand No.31902426).vThis work was supported by the Shanghai Sailing Program(Grant No.19YF1419800)the Special project for the exploitation and utilization of Antarctic biological resources of Ministry of Agriculture and Rural Affairs(Grant No.D-8002-18-0097).
文摘The Knowledge of turbulent flow developing inside and around the bottom trawl net is of great importance not only for improving the hydrodynamic performance of the gear but also for the selectivity via the fish response,such as the herding response or escape behavior.The 3-D Electromagnetic Current Velocity Meter(ECVM)measurements were performed to investigate the effect of turbulent flow on the bottom trawl net performance and to analyze the turbulence intensity and velocity ratio inside and around different parts of the trawl net.Proper orthogonal decomposition(POD)method was applied in order to extract the phase averaged mean velocity field of turbulent flow from each available ECVM instantaneous velocity.The results demonstrated the existence of turbulence flow,consisting of turbulent boundary layer flow and the turbulence due to the trawl wake developing all inside and around the bottom trawl net.Increasing input streamwise velocity results in faster trawl movement and a significant turbulent flow.The maximum turbulence intensity inside and around trawl wing,square part,first belly,second belly,third belly,cod-end is 0.95%,1.34%,3.40%,4.10%,4.25%and 3.80%,respectively.It was found that the mean velocity field in a turbulent flow inside and around trawl net cod-end recovered on the average was~77.58%of the input streamwise velocity.It is~12.92%,~13.07%,~11.40%,~13.00%and~0.45%less than that inside and around trawl wing,square part,first belly,second belly,and third belly of the bottom trawl net,respectively.The turbulent flow behavior depends strongly on the structure oscillation,input streamwise velocity and,porosity of the net structure.It is necessary to take into account the velocity reduction inside and around a different part of the trawl net to improve the entire drag force determination,cod-end design,and further selectivity control of the fishing gear.